Effect of Phosphate Concentration on Anodizing Process Efficiency and Aluminium Surface Hardness in 16% Sulfuric Acid Solution

Main Article Content

Robby Sudarman
Retno Indarti
Nurcahyo Nurcahyo
Ahmad Fauzan
Agustinus Ngatin
Rony Pasonang Sihombing

Abstract

One of the problems the aircraft industry faces is equipment that has decreased performance in the period before planning. The solution to this condition is that a material that has hard properties and is corrosion-resistant is needed. Aluminium is a metal that is applied as equipment in the industry because it has the characteristics of being light, strong, corrosion resistant and easy to shape, but has properties that are easy to deform, have low hardness and wear resistance. Anodizing process has the characteristics to improve the surface properties of aluminium metal in physical and mechanical properties. The anodizing process of aluminium metal using sulfuric acid solution produces a thicker oxide layer than in other solutions, such as phosphoric acid solution. This research studied the effect of phosphoric acid concentration on process efficiency, oxide layer thickness, and the hardness of the anodized oxide layer in 16% sulfuric acid solution. Phosphoric acid solution concentration varied from 0; 0.5; 1;2;4; and 8% in 16% sulfuric acid solution at 5 Volts voltage or 1.12 A/dm2 current density with 25 minutes processing time. The results showed that the anodizing process in 16% sulfuric acid solution had the lowest efficiency of 19.3% after adding variations in the concentration of phosphoric acid. These conditions reached the optimum in 16% sulfuric acid solution with the addition of 1% phosphoric acid; 26.6 mg oxide mass; 50.33% efficiency; 90.48 mg/dm2 oxide layer thickness and 86.57 HV metal surface hardness

Downloads

Download data is not yet available.

Article Details

How to Cite
Sudarman, R., Indarti, R., Nurcahyo, N., Fauzan, A., Ngatin, A., & Sihombing, R. P. (2024). Effect of Phosphate Concentration on Anodizing Process Efficiency and Aluminium Surface Hardness in 16% Sulfuric Acid Solution. Fluida, 17(1), 1–6. https://doi.org/10.35313/fluida.v16i2.4461
Section
Articles
Author Biographies

Ahmad Fauzan, Department of Chemical Engineering, Politeknik Negeri Bandung

 

 

Agustinus Ngatin, Department of Chemical Engineering, Politeknik Negeri Bandung

 

 

Rony Pasonang Sihombing, Department of Chemical Engineering, Politeknik Negeri Bandung

 

 

References

[1] B. Sofyan, “Analisis Pengaruh Sr dan Ti Terhadap Ketahanan Korosi Paduan AC4B Please refer as : Zulaina S . Rahmawati dan Bondan T . Sofyan , Analisis Pengaruh Sr dan Ti Terhadap Ketahanan Korosi Paduan AC4B , Prosiding Seminar Material dan Metalurgi , Serpong , 3 No,” no. December, 2016.
[2] I. G. N. Santhiarsa, “Pengaruh Kuat Arus Listrik Dan Waktu Proses Anodizing Dekoratif Pada Aluminium Terhadap Kecerahan Dan Ketebalan Lapisan,” J. Energi Dan Manufaktur, vol. 4, no. 1, 2010.
[3] D. Veys-Renaux, N. Chahboun, and E. Rocca, “Anodizing of multiphase aluminium alloys in sulfuric acid: in-situ electrochemical behaviour and oxide properties,” Electrochim. Acta, vol. 211, pp. 1056–1065, 2016, doi: 10.1016/j.electacta.2016.06.131.
[4] E. Budimulyani, “Pengaruh Temperatur Dan Waktu Pengaruh Temperatur Dan Waktu Proses Anodisasi Puley Aluminium Dalam Larutan asam sulfat Encer Dan Campuran Larutan asam sulfat dan asam oksalat Encer,” Politeknologi, vol. 9, no. 3, 2010.
[5] M. Nurhidayat, “Pengaruh Arus Dan Waktu Anodisasi Terhadap Kekerasan Pada Lapisan Oksida Aluminium,” Skripsi, 2017.
[6] A. S. Sanjaya, H. L. Novianti, and O. A. Fadilah, “Penurunan Laju Korosi Logam Aluminium Menggunakan Inhibitor Alami Decreasing the Corrosion Rate of Aluminum Metals Using Natural Inhibitors,” vol. 02, no. 1, pp. 30–35, 2018.
[7] R. S. Budi Utomo and S. Alva, “Studi Dan Karakterisasi Laju Korosi Logam Aluminium Dengan Pelapisan Membran Sol-Gel,” J. Tek. Mesin, vol. 6, no. 3, p. 191, 2017, doi: 10.22441/jtm.v6i3.1969.
[8] W. D. Callister Jr and D. G. Rethwisch, Materials Science and Engineering - An Introduction 10th Edition. 2018.
[9] S. ONO, “Structure and Growth Mecanism of Anodic Oxide Films Formed on Aluminum and Gas Emision,” J. Vac. Soc. Japan, vol. 52, no. 12, pp. 637–644, 2009.
[10] B. W. Sidharta, “Pengaruh Konsentrasi Elektrolit Dan Waktu Anodisasi Terhadap Ketahanan Aus, KEkerasan Serta KEtebalan Lapisan Oksida Paduan Aluminium Pada Material Piston,” J. Teknol. Technoscientia, vol. 7, no. 1, pp. 10–21, 2014.
[11] M. Muzaki, E. Sutikno, and P. H. Setyorini, “Pengaruh Rapat Arus Proses Continuous Hard Anodizing Elektrolit (H2SO4) terhadap Laju Korosi Pipa Aluminium 6061 dengan Pengujian Kabut Garam,” J. Energi dan Teknol. Manufaktur, vol. 2, no. 02, pp. 37–40, 2019, doi: 10.33795/jetm.v2i02.40.
[12] S. U. Mariam, A. Ibrahim, Y. Yuniati, and N. Nazirudin, “Pengaruh Variasi Rapat Arus Hard Anodizing Terhadap Laju Korosi Pada Aluminium 6061,” J. Mesin Sains Terap., vol. 4, no. 2, p. 99, 2020, doi: 10.30811/jmst.v4i2.2014.
[13] N. H. Sari, Suteja, and S. Hidayatullah, Pengantar Inhibitor Korosi Alami. DEEPUBLISH, 2021.
[14] M. Rifky, “Ekstrak daun sukun sebagai inhibitor alami penghambat korosi pada kawat stainless steel,” J. Ilm. dan Teknol. Kedokt. Gigi, vol. 15, no. 2, p. 61, 2019, doi: 10.32509/jitekgi.v15i2.960.
[15] D. Masruri, “Pengaruh Konsentrasi Larutan Asam Sulfat Terhadap Ketahanan Korosi Hasil Proses Anodisasi Aluminium,” pp. 1–7, 2019.
[16] Sumanto and R. El Maghfiroh, “Efek Temperatur Terhadap Laju Korosi,” J. Flywheel, vol. 10, pp. 26–32, 2019, [Online]. Available: https://ejournal.itn.ac.id/index.php/flywheel/article/view/722.
[17] L. Agustriyana, H. P. Buwono, and others, “Pengaruh Variasi Kuat Arus Listrik Dan Waktu Proses Anodizing Pada Alumunium Terhadap Laju Korosi Dalam Media Larutan Garam,” J. Tek. Ilmu Dan Apl., vol. 1, no. 2, pp. 39–45, 2020.
[18] H. M. Setiawan and N. Ifansyah, “Pengaruh Waktu Anodizing Dan Jarak Anoda-Katoda Terhadap Nilai Laju Korosi Aluminium 6061-T6,” J. Inov., vol. 2, no. 1, pp. 1–4, 2019