Pyrolysis of Medical Mask Waste into Liquid Fuel Using Activated Natural Zeolite Catalyst

Main Article Content

Fitria Yulistiani
Risdo Satriya Agati
Aria Henry Haidar
Ayu Ratna Permanasari

Abstract

Due to the COVID-19 pandemic, there has been a rise in the amount of mask waste, which can be recycled using catalytic pyrolysis. The method targets polypropylene, the primary material used in mask production, and utilizes activated natural zeolite as a catalyst. This process can enhance the selectivity of oil product compounds such as benzene, toluene, ethyl benzene, and xylene. This research aims to investigate the impact of the Catalyst Feed mass ratio (C/F) and time on the distribution and recovery of oil products and to identify the optimal operating conditions for generating oil products comparable to the gasoline fraction. The steps are preparation, activation of zeolite catalysts, pyrolysis, component distribution analysis, and pyrolytic oil physical properties test. The variations in this study are C/F of 0.05, 0.1, and 0.2; and pyrolysis times of 30 and 60 minutes. Increasing the C/F to 0.2 reduced the oil yield to 41.18 %w/w, while increasing the time to 60 minutes reduced the char yield to around 3 %w/w. Pyrolysis at C/F = 0.05 for 30 minutes produced the highest monoaromatic composition of 22.884 %w/w, while pyrolysis at C/F = 0.2 produced the highest monoaromatic contents of 20.274 %w/w. The best operating conditions, namely 60 minutes of pyrolysis with C/F = 0.05, resulted in an oil yield of 47.31 %w/w and an octane number of oil products of 80.645. These conditions produce oil with properties of kerosene fraction with a density of 0.778 g/mL and viscosity of 1.005 cSt.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fitria Yulistiani, Agati, R. S., Haidar, A. H., & Ayu Ratna Permanasari. (2024). Pyrolysis of Medical Mask Waste into Liquid Fuel Using Activated Natural Zeolite Catalyst. Fluida, 17(2), 40–49. https://doi.org/10.35313/fluida.v17i2.4789
Section
Articles

References

[1] P. P. Indonesia, Penetapan Bencana Nonalam Penyebaran Corona Virus Disease 2019 (COVID-19) Sebagai Bencana Nasional, vol. 12. 2020.

[2] T. M. Adyel, “Accumulation of plastic waste during COVID-19,” Science, vol. 369, no. 6509, pp. 1314–1315, Sep. 2020, doi: 10.1126/science.abd9925.

[3] W. H. Nufus, “1,5 Ton Sampah Masker Bekas dari Rumah Tangga Terkumpul selama Pandemi.”

[4] S. Jung, S. Lee, X. Dou, and E. E. Kwon, “Valorization of disposable COVID-19 mask through the thermo-chemical process,” Chemical Engineering Journal, vol. 405, p. 126658, 2021, doi: 10.1016/j.cej.2020.126658.

[5] S. B. Lee et al., “Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis,” Environmental Pollution, vol. 283, p. 117060, 2021, doi: 10.1016/j.envpol.2021.117060.

[6] C. Li et al., “Bioresource Technology Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment,” Bioresource Technology, vol. 346, no. October 2021, p. 126582, 2022, doi: 10.1016/j.biortech.2021.126582.

[7] S. Das and S. Paney, “Pyrolysis and Catalytic Cracking of Municipal Plastic Waste for Recovery of Gasoline Range Hydrocarbons Pyrolysis and Catalytic Cracking of Municipal Plastic Waste for Recovery of Gasoline Range Hydrocarbons,” Thesis National Institute of Technology Rourkela, pp. 10–55, 2007.

[8] J. Aguado, D. P. Serrano, and J. M. Escola, Catalytic Upgrading of Plastic Wastes. 2006. doi: 10.1002/0470021543.ch3.

[9] X. Sun, Z. Liu, L. Shi, and Q. Liu, “Pyrolysis of COVID-19 disposable masks and catalytic cracking of the volatiles,” Journal of Analytical and Applied Pyrolysis, vol. 163, no. February, p. 105481, 2022, doi: 10.1016/j.jaap.2022.105481.

[10] Y. Xue, P. Johnston, and X. Bai, “Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics,” Energy Conversion and Management, vol. 142, pp. 441–451, 2017, doi: 10.1016/j.enconman.2017.03.071.

[11] C. Park, H. Choi, K. Y. Andrew Lin, E. E. Kwon, and J. Lee, “COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste,” Energy, vol. 230, p. 120876, 2021, doi: 10.1016/j.energy.2021.120876.

[12] T. Windarti and A. Suseno, “Preparasi Katalis Zeolit Alam Asam Sebagai Katalis Dalam Proses Pirolisis Katalitik Polietilena,” J.Kim. Sains & Apl, vol. 7, no. 3, pp. 72–77, 2004.

[13] K. Sa’diyah, “Pengaruh Jumlah Katalis Zeolit Alam Pada Produk Proses Pirolisis Limbah Plastik Polipropilen (Pp),” Jurnal Bahan Alam Terbarukan, vol. 4, no. 2, pp. 40–45, 2015, doi: 10.15294/jbat.v4i2.4171.

[14] Y. D. Ngapa and J. Gago, “Efektivitas Zeolit Alam Ende-NTT sebagai Adsorben dalam Pemurnian Bioetanol Berbahan Baku Moke: Minuman Tradisional Flores,” Jurnal Teknik Kimia dan Lingkungan, vol. 4, no. 2, p. 121, 2020, doi: 10.33795/jtkl.v4i2.137.

[15] A. Santoso, I. B. S. Sumari, N. N. Safitri, A. R. Wijaya, and D. E. K. Putri, “Activation of zeolite from malang as catalyst for plastic waste conversion to fuel,” Key Engineering Materials, vol. 851 KEM, no. June, pp. 212–219, 2020, doi: 10.4028/www.scientific.net/KEM.851.212.

[16] T. Windarti and A. Suseno, “Preparasi Katalis Zeolit Alam Asam Sebagai Katalis Dalam Proses Pirolisis Katalitik Polietilena Preparation of Acidic Natural Zeolite Catalyst As a Catalyst in Catalytic Pyrolisis Process of Polyetilene,” J.Kim. Sains & Apl, vol. 7, no. 3, pp. 72–77, 2004.

[17] N. Miskolczi, L. Bartha, G. Deák, and B. Jóver, “Thermal degradation of municipal plastic waste for production of fuel-like hydrocarbons,” Polymer Degradation and Stability, vol. 86, no. 2, pp. 357–366, 2004, doi: 10.1016/j.polymdegradstab.2004.04.025.

[18] G. Yan, X. Jing, H. Wen, and S. Xiang, “Thermal cracking of virgin and waste plastics of PP and LDPE in a semibatch reactor under atmospheric pressure,” Energy and Fuels, vol. 29, no. 4, pp. 2289–2298, 2015, doi: 10.1021/ef502919f.

[19] G. Protić-Lovasić, N. Jambrec, D. Deur-Siftar, and M. V. Prostenik, “Determination of catalytic reformed gasoline octane number by high resolution gas chromatography,” Fuel, vol. 69, no. 4, pp. 525–528, 1990, doi: 10.1016/0016-2361(90)90328-N.

[20] WWFC, GASOLINE AND DIESEL FUEL, 6th ed. ACEA, Aliance, EMA, JAMA, 2019.

[21] O. S. Mazdhatina, A. Setiawan, and V. Setiani, “Pengaruh Katalis Zeolit Alam terhadap Karakteristik Minyak Pirolisis Sampah Plastik PP (Polypropylene),” Conference Proceeding on …, no. 2623, pp. 87–90, 2020.

[22] K. Eldwita, S. D. Lestari, and S. A.