Effectiveness of Silica Sulphate Catalyst Based on Rice Husk Ash in The Oleic Acid Esterification Process
Main Article Content
Abstract
Rice husk contains a lot of silica, so it is widely used as research material. One example is as a raw material for the synthesis of silica sulfate. Silica sulfate was synthesized using the sol-gel method with an impregnation time of 6 hours and 2 hours of calcination with variations in calcination temperature of 400-800oC. The analysis carried out on the silica sulfate catalyst is the analysis of acid concentration and FTIR. The best acid concentration results were 0.86 mmol/gram at 400oC. Characterization with FTIR showed similar peaks between silica and silica sulfate. The -OH and Si-O groups appeared at the peak of the analysis results, indicating that the synthesis of silica from rice husk had been carried out successfully. Modifying silica with sulfuric acid is not obvious through FTIR because the S-OH groups of sulfate ions overlap with the silica atoms in siloxane. The resulting silica sulfate is used as a catalyst in the esterification reaction of oleic acid with methanol. The esterification process was carried out at 60oC and varied with independent variables, namely catalyst loading (5-10%-b), time (2-4 hours), and molar ratio (1:6-1:12). The experimental design was determined using the Response Surface Method (RSM) using Design Expert. From the study results, the best variation obtained was a conversion of 87.03% with a variation of catalyst loading of 7.5%-b, a time of 4 hours, and a molar ratio of 1:12.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in the FLUIDA journal agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.
References
[1] Handayani, P. A., Nurjanah, E., & Rengga, W. D. P.,”Pemanfaatan Limbah Sekam Padi menjadi Silika Gel”, Jurnal Bahan Alam Terbarukan, vol.3, no.2, 2014,https://doi.org/10.15294/jbat.v3i2.3698. DOI: https://doi.org/10.15294/jbat.v3i2.3698
[2] Tedeus, A., Silalahi, I., Sayekti, E., & Sianipar, A, “Karakterisasi Katalis Zeolit-Ni Regenerasi dan Tanpa Regenerasi dalam Reaksi Perengkahan katalitik”, Jurnal Kimia Katulistiwa, vol.2, no.1, pp. 24-29, 2013.
[3] Izumi, Y., Hisano, K., & Hida, T, “Acid Catalysis of Silica-included heteropolyacid in polar reaction”, Applied Catalysis A, vol.188, pp.277-282, 1999, https://doi.org/10.1016/S0926-860X(98)00399-8. DOI: https://doi.org/10.1016/S0926-860X(98)00399-8
[4] Ghoreishi, K. B., Asim, N., Yarmo, M. A., & Samsudin, M. W, “Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation”, Chemical Papers, vol. 68, no.9, pp. 1194–1204, 2014, https://doi.org/10.2478/s11696-014-0550-x DOI: https://doi.org/10.2478/s11696-014-0550-x
[5] Prabudi, M., Nurtama, B., Purnomo, H., Studi, P., Profesional, M., Pangan, T., Pascasarjana, S., Bogor, P., Ilmu, D., & Pertanian, T, “Aplikasi Response Surface Methodology (RSM) dengan Historical Data pada Optimasi Proses Produksi Burger Aplication of Response Surface Methodology (RSM) Using Historical Data on Optimation Burger Production Process”, Jurnal Mutu Pangan, vol.5, no.2, pp. 109–115, 2018.
[6] Salman, Moh. N., Krisdiyanto, D., Khamidinal, K., & Arsanti, P. “Preparasi Katalis Silika Sulfat dari Abu Sekam Padi dan Uji Katalitik pada Reaksi Esterifikasi Gliserol dengan Anhidrida Asam Asetat”, Reaktor, vol.15, no.4, 231-240, 2015, https://doi.org/10.14710/reaktor.15.4. DOI: https://doi.org/10.14710/reaktor.15.4.231-240
[7] Oktaviana Hutagalung, C, “Karakteristik Fourier Transform Infra Red dan Kekuatan Bentur Komposit Poliester Tak Jenuh Berpengisi Abu Sekam Padi Putih”, Jurnal Teknik Kimia USU, vol. 3, no.1, 2014. DOI: https://doi.org/10.32734/jtk.v3i1.1497
[8] Manríquez, M. E., López, T., Gomez, R., Picquart, M., & Hernández-Cortez, J. G, “Sol-gel silica modified with phosphate and sulfate ions”, Journal of Non-Crystalline Solids 345–346, pp. 643–646, 2014, https://doi.org/10.1016/j.jnoncrysol.2004.08.115. DOI: https://doi.org/10.1016/j.jnoncrysol.2004.08.115
[9] Herlina, I., & Fitra, E. R, “Sintesis dan Karakterisasi Silika Tersulfatasi dari Sekam Padi’, Jurnal Rekayasa Proses, vol.12, no.1, pp. 17-22, 2018, https://doi.org/10.22146/jrekpros.34362 DOI: https://doi.org/10.22146/jrekpros.34362
[10] Nongbe, M. C., Ekou, T., Ekou, L., Yao, K. B., Le Grognec, E., & Felpin, F. X, “Biodiesel production from palm oil using sulfonated graphene catalyst”, Renewable Energy, vol.106, pp.135–141, 2017, https://doi.org/10.1016/j.renene.2017.01.024. DOI: https://doi.org/10.1016/j.renene.2017.01.024
[11] Syazwani, O. N., Rashid, U., astuli, M. S., & Taufiq-Yap, Y. H, “Esterification of palm fatty acid distillate (PFAD) to biodiesel using Bi-functional catalyst synthesized from waste angel wing shell (Cyrtopleura costata)”, Renewable Energy, vol. 131, pp. 187–196, 2019, https://doi.org/10.1016/j.renene.2018.07.031 DOI: https://doi.org/10.1016/j.renene.2018.07.031
[12] Mendow, G., Veizaga, N. S., Sánchez, B. S., & Querini, C. A, “Biodiesel production by two-stage transesterification with ethanol”, Bioresource Technology, vol.102, pp.10407–10413, 2011, https://doi.org/10.1016/j.biortech.2011.08.052. DOI: https://doi.org/10.1016/j.biortech.2011.08.052
[13] Prihanto, A., & Irawan, T. A. B, “Pengaruh Temperatur, Konsentrasi Katalis Dan Rasio Molar Metanol-Minyak Terhadap Yield Biodisel Dari Minyak Goreng Bekas Melalui Proses Netralisasi-Transesterifikasi”, Metana, vol.13, no.1, pp. 30–36, 2017. DOI: https://doi.org/10.14710/metana.v13i1.11340
[14] Tian, F., Xu, B., Li, Y., Deng, J., Zhang, H., & Peng, R, “A Highly Active, Readily Synthesized and Easily Separated Graphene Oxide (GO)/Polyethersulfone (PES) Catalytic Membrane for Biodiesel Production”, ChemistrySelect, vol.5, pp. 1676–1682, 2020, https://doi.org/10.1002/slct.201903846 DOI: https://doi.org/10.1002/slct.201903846
[15] Ilgen, O, “Investigation of reaction parameters, kinetics and mechanism of oleic acid esterification with methanol by using Amberlyst 46 as a catalyst”, Fuel Processing Technology, vol.124, pp.134–139, 2014, https://doi.org/10.1016/j.fuproc.2014.02.023 DOI: https://doi.org/10.1016/j.fuproc.2014.02.023