KARAKTERISTIK MATERIAL LOGAM 10 CENT HONGKONG DENGAN METODE XRD

Sri Wuryanti Jurusan Teknik Konversi Energi - Politeknik Negeri Bandung E-mail:sriwuryanti.lamda@gmail.com

Abstrak

Karakteristik material bertujuan untuk bisa memahami dan memanfaatkan material dengan optimal yakni mengetahui dengan jelas struktur mikro maupun struktur makro dari material tersebut. Untuk mendapatkan informasi tentang struktur mikro salah satunya dapat dilakukan dengan metode analitik karakterisasi material menggunakan metode X-ray Difraction (XRD) untuk memodelkan jenis senyawa, prosentase senyawa dan karakteristik kristalografinya. Setelah diperoleh data-data, dilakukan pengolahan data hasil pengujian dengan software database pendukung Automatic Powder Difraction (APD) untuk melakukan fitting dari pola difraksi yang dihasilkan oleh XRD. PC-PDFWIN merupakan software database crystal yang terdapat pada International Crystal Difraction Data (ICDD), serta Match V1.9 yang merupakan software database crystal yang terdapat pada IUCr/COD/AMCSD. Untuk menentukan phasa atau senyawa yang terkandung dalam material secara tepat dilakukan analisa dengan GSAS+EXPGUI sebagai software analisis yang lebih akurat. Dari hasil pengujian diperoleh komposisi logam 10 cent Hongkong mengandung unsur Cu dan Zn.

Kata Kunci: APD, XRD, PC-PDWIN, Match V1.9

PENDAHULUAN

Sekitar 95% dari semua bahan padatan dapat dideskripsikan sebagai kristalin. Ketika sinar-x berinteraksi dengan senyawa kristalin (fasa), maka akan didapatkan pola difraksi. Sinar-X yang jatuh pada permukaan bidang kristal suatu material akan dihamburkan sesuai dengan komposisi atau jenis kristal tersebut. Pola hamburan (difraksi) sinar-X merupakan karakteristik masing-masing senyawa yang tidak tergantung satu sama lain. Panjang gelombang sinar-X yang digunakan untuk *X*-*ray Difraction* (XRD) berkisar antara 0,5 – 2,5Å.

Sinar X merupakan sinar hasil tumbukan antara elektron kecepatan tinggi yang dibangkitkan oleh filamen tusten dengan logam target. Logam target umumnya memakai kobalt dan tembaga. Komponen utama XRD, yaitu :

- a. Sumber elektron (katoda) berupa filamen tungsten
- b. Tegangan tinggi untuk mempercepat electron
- c. Logam target (anoda), logam umumnya terbuat tembaga atau kobalt.

Hasil difraksi akan menggambarkan pola difraksi yang berupa spektrum karakteristik suatu sampel kristalin. Untuk menentukan phasa atau senyawa yang terkandung dalam material secara tepat dilakukan analisa dengan GSAS+EXPGUI. Untuk menjalankan program GSAS diperlukan beberapa tahapan dan sofware antara lain :

a.Perkiraan senyawa yang terkandung di dalam sampel

- b.Space group dari kristal dan parameter kisi
- c.Posisi atom dari kristal
- d.Software program konversi Bella V2_12
- e.Software GSAS + EXPGUI

METODE PENELITIAN

a.Persiapkan sampel koin

Cuci koin 10 cent Hongkong dengan cairan pembersih ethanol untuk menghindari adanya kontaminasi dengan material lain.

- b.Pengujian sampel koin
 - Letakkan sampel koin pada penjepit sampel bed
 - Ukur posisi koin tepat pada garis tengah alat ukur sampel standart, apabila posisi sampel terlalu kecil dan tidak dapat dijepit, letakkan sampel pada lilin yang telah tersedia atau pergunakan alat bantu lain seperti kaca sampel.

- Kondisi Operasi Start angle (°2θ): 20.010 dan End angle (°2θ): 89.970

HASIL DAN PEMBAHASAN

Analisa XRD (X-ray diffraction)

Dari percobaan XRD sampel koin 10 cent Hongkong akan didapatkan hasil pengujian berupa sudut 20 dan intensitas dengan puncak tertinggi berada di sudut 52.24° dan 77.065°, selanjutnya dengan menggunakan *software* Bella V2_12 data yang dikeluarkan oleh *software* APD pada peralatan XRD Philips PW3710 di reproduksi pola difraksinya seperti terlihat pada grafik1dan grafik 2.

Gambar 1 Pola difraksi XRD yg di reproduksi dg software bella V2 12

Karakterisasi struktur mikro

Analisa lebih lanjut untuk mengetahui jenis fasa yang terdapat pada sampel, maka data hasil percobaan XRD dengan *file* exstensi RD dikonversikan ke ekstensi UDF dan UDI dengan menggunakan software APD (*Automatic Powder Diffractometer*) yang dikeluarkan oleh Phillips (XRD *Manufacture*).

Langkah selanjutnya adalah melakukan identifikasi fasa pada kristal beserta parameter kisinya dengan berpedoman pada *d-spacing* hasil pengukuran XRD dengan menggunakan *software* Match versi 1.9. Karena banyaknya data material yang berada di dalam database, maka hasil analisis dengan XRF yang menghasilkan unsur/elemen penyusun kristal pada sampel sangat membantu sekali untuk mempersempit pencarian data.

Proses pencocokan antara data XRD dengan data Match digunakan metode Hanawalt, dimana untuk melakukan identifikasi material yang tidak diketahui melalui identifikasi 3 buah intensitas refleksi tertinggi dan menganggap d-spacing dari ketiga intensitas sebagai d1, d2, d3. Jika ketiga nilai d dan intensitasnya mendekati dengan nilai intensitas hasil percobaan, maka dapat dilakukan pencocokan pada semua nilai intensitas dan refleksi yang lainnya.

Dengan melihat peak position pada pencocokan antara hasil XRD dengan database Match maka dapat diperkirakan fasa yang terkandung dalam paduan solid solution yang dihasilkan mendekati tabel 96-901-3021 untuk Cu dan 96-900-8523 untuk Zn di dalam gambar seperti snap shot seperti tersebut di bawah.

Gambar 2 Fitting pola difraksi XRD software Match V1.9 (Cu) dan Zn

Setelah didapatkan perkiraan jenis fasa yang terkandung di dalam sampel yang disertai juga parameter kisi dan space groupnya dengan bantuan fitting dan pencocokan dengan *database*, maka untuk memastikan apakah fasa yang terkandung di dalam sampel tersebut memang benar serta untuk menentukan fraksi berat masing-masing fasa tersebut maka perlu dilakukan analisis lebih lanjut lagi dengan

menggunakan software GSAS.

Perkiraan senyawa / fasa yang terkandung dalam sampel, space group dan parameter kisi diperoleh dari pencocokan hasil fitting pola difraksi XRD dari sampel dengan Match V1.9, sedangkan posisi atom untuk tiap-tiap fasa yang terkandung dalam sampel diperoleh dari Match seperti tersebut di bawah.

Tabel 1 Tabel struk	tur mikro Cu (sumber	· AMCSD)			
Entry # 96-901-3021			thread a second second second second second		
			Internation States	AND SUBSICION STREET	
Name			i suterio e que ta	and the second second second	
Mineral Name	Copper				
Formula	Cu				
I/Ic	11.99				
Sample Name	9013020				
Publication					
Bibliography	Suh IK., Ohta H., Waseda Y., "High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction Locality: synthetic Sample: at $T = 1076$ K", Journal of Materials Science 23, 757-760 (1988)				
Origin of data					
Source of entry	COD (Crystallography Open Database)				
Link to orig. entry	9013020				
Crystallographic d	ata				
Space group	F m -3 m (225)				
Crystal system	cubic				
Cell parameters	a=3.6670 Å				
Atom coordinates	Element Oxid. x	y z	Bi Focc		
	Cu 0.0	0 0.00 0.00 1.	00000 1.00000		
Constitution of	0	0 0 0	0		
Diffraction lines					
and the second second	d [Å] Int. h]	k I Mult.			
	2.1171 1000.				
	0	1 1 8			
*	1.8335 452.5 2	0 0 6			
	1.2965 222.6 2	0 2 12			
	1.1056 232.8 3	1 1 24			
	1.0586 66.7 2	2 2 8			
Experimental					
Physical Properties	Monte sontes or statutes				
Calc. density	8.56000 g/cm ³				
- actioney	Siz Good Brenn				
Experimental Physical Properties Calc. density	8.56000 g/cm ³	Perkin ontoo oferin charte	ngalansen gang ba nagab namposy a nagab namposy a nagab namposita namposita nambana namposita namposita inami namposita na inami namposita	and and the second second angle and the second of the second second and second second second second second second and second second second second second second second and second second second second second second second second and second second second second second second second second and second second second second second second second second second and second second second second second second second second second and second seco	

.

hig alam udstat and gourners when have synthe high mining dialog contains and alam. Tabel 2 Tabel struktur mikro Zn (sumber AMCSD) Entry # 96-900-8523

Phase classification	ation	See 15			
Name					
Mineral Name	Zinc				
Formula	Zn				
I/Ic	10.92				
Sample Name	9008522				
Publication					
Bibliography	Wyckoff R. W. G., "Second edition. Interscience Publishers, New York, New York				
	Hexagonal closest packed, hcp, structure". Crystal Structures 1, 7-83 (1963)				
Origin of data					
Source of	COD (Crystallography Open Database)				
entry					
Link to orig.	9008522				
entry					
Crystallograph	ic data				
Space group	P 63/m m c (194)				
Crystal system	hexagonal				
Cell	a=2.6648 Å c=4.9467 Å				
parameters					
Atom	ElementOxid. x y z Bi Focc				
coordinates	Zn 0.3330.6670.2501.0000001.000000				
Diffraction data					
Diffraction line	2S				
	d [Å] Int.h k l Mult.				
	2.4734 378.8 0 0 2 2				
	2.3078 229.3 1 0 0 6				
	2.0914 1000.0 1 0 1 12				
	1.6873 155.3 0 1 2 12				
	1.3416 185.0 0 1 3 12				
Experimental					
Experimental					
Physical Proper	rties				
Calc density	$713900\mathrm{g/cm^3}$				
care, achistey					
1					

GSAS Refinement

Jika data-data yang diperlukan untuk menjalankan program GSAS sudah tersedia dan telah dilakukan konversi file percobaan XRD dari *extension* .udf menjadi *extension* .raw langkah selanjutnya adalah memasukkan data-data yang diperlukan seperti fasa, elemen, parameter kisi dan posisi atom, dan setelah dimasukkan *file* percobaan dalam bentuk *extension* .raw serta instrument *file* dalam *extension* .prm, maka langkah selanjutnya adalah interasi dengan powpref, powplot dan genless serta perubahan beberapa parameter yang berada di dalam program GSAS untuk mendapatkan hasil interasi yang terbaik.

Setelah melakukan iterasi sebanyak

dengan nilai chi-square dan wRp didapatkan nilai Chi 2 = 1,024 dan wRp (weight reduction powder) = 0.0893 (8,93%)

Gambar 3 Profil grafik liveplot hasil GSAS

Gambar 4 Profil hasil fitting dengan pola difraksi

175

Gambar 5 Profil grafik probability normal

Gambar 6 Kurva distribusi kesalahan ternormalisasi

Tabel 3 Hasil listview fitting dengan GSAS

Restraint data statistics: No restraints used

Powder data statistics Fitted -Bknd
 Bank Ndata Sum (w*d**2)
 wRp
 Rp
 wRp
 Rp
 wRp
 Rp
 <th Rp Npfree DWd Integral 0 0.039 No serial correlation in fit at 90% confidence for 1.895 < DWd < 2.105 Cycle 192 There were 3495 observations. Total before-cycle CHI**2 (offset/sig) = 3.5778E+03 (1.0145E+00) Reduced CHI**2 = 1.024 for 2 variables Reflection data statistics Histogram 1 Type PXC Nobs = 18 R(F**2) = 0.1573 After matrix normalization and Marquardt modification: Full matrix recip. condition value & -log10 = 0.7163 0.14 The value of the determinant is 9.7268*10.0**(-1) Atom parameters for phase no. 1 frac x y z 100*Uiso 100 Calculated unit cell formula weight: 254.184, density: 8.560gm/cm**3 100*Uiso 100*U11 100*U22 100*U33 100*U12 100*U13 100*U23 Atom parameters for phase no. 2 frac 100*Uiso 100*U11 100*U22 100*U33 100*U12 100*U13 100*U23 Calculated unit cell formula weight: 392.280, density: 21.413gm/cm**3

KESIMPULAN

Dari hasil pengolahan data dengan software GSAS dapat disimpulkan sebagai berikut :

- Fasa-1 (Cu)

- a. Calculated ucw 254.184
- b. Density 8.560 gm/cm³
- c. %wt Fraction 99.92 %
- d. Struktur kristal F m -3 m
- e. Parameter kisi

a	b	с
3.6670 Å	3.6670 Å	3.6670 Å
α	β	γ
90	90	90

- Fasa-2 (Zn)
 - a. Calculated ucw 392.28
 - b. Density 21.413 gr/cm³
 - c. %wt Fraction 0.08 %
 - d. Struktur kristal P 63/m m

```
e. Parameter kisi
a b
```

2.6648Å 2.6648Å 4,9467Å α β γ

90 90 120

DAFTAR PUSTAKA

B. R. York. 1997. New X-ray Diffraction Line Profile

C

Function Based on Crystallite Size and Strain Distributions Determined from Mean Field Theory and Statistical Mechanics.

David Bhartelmy. 2003. *Mineralogy Data Base*, http://webmineral. com

- D. Balzar, N. Audebrand, M. Daymond, A. Fitch, A. Hewat, J.I. Langford, A. Le Bail,D. Louër, O. Masson, C.N. McCowan, N.C. Popa, P.W. Stephens, B. Toby. 2004. Size – Strain Line – Broadenin Analysis of the Ceria Round -Robin Sample, Journal of Applied Crystallography 911-924.
- D. Cullity . 1998 . Element of Xray Difraction, Prentice - Hall.
- Hikam.M. 2007. Kristalografi dan teknik difraksi. Jakarta
- H. P. Klug and L.E. Alexander. 1974. X - ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edition, John Wiley & Sons.
- Joseph B Lambert. 1976 . Organic Structural Analysis, Mc. Publishing Co. Inc.
- Myers, G.E. 1972. Conduction Heat Transfer. New York: Mc.Graw-Hill Book Company.
- S. Enzo, G. Fagherazzi, A. Benedetti,
- S. Polizzi . 1988 . A Profile Fitting Procedure for Analysis of Broadened X- ray Diffraction, J. Appl. Cryst. 21,536-542.