PENGARUH MODEL DIFRAKSI TERHADAP PERAMBATAN GELOMBANG DETONASI PADA CAMPURAN BAHAN BAKAR HIDROGEN-OKSIGEN DENGAN DILUENT ARGON

  • Bambang Puguh Politeknik Negeri Bandung
Keywords: detonasi, deflagrasi, shock wave, facing step

Abstract

Pada sistem pembakaran snpersonik, shock wave dan reaction wave merambat dengan kondisi berhimpit dengan kecepatan di bawah 1 mikro detik. Shock wave yang memiliki tekanan tinggi hingga mencapai 20 kali tekanan awal akan membahayakan bagi keselamatan manusia jika kecelakaan detonasi terjadi. Dengan demikian  diharapkan kecelakaan yang diakibatkan oleh gelombang detonasi akan dapat dihindari atau diminimalisasi. Hal ini dilakukan dengan cara mengubah gelombang detonasi menjadi gelombang deflagrasi, yaitu memisahkan shock wave dengan reaction wave akibat proses ekspansi gelombang detonasi. Pada eksperimen ini, model diuji pada pipa uji detonasi (PUD) horizontal berpenampang lingkaran dengan diameter dalam 50 mm dan panjang 6300 mm yang terdiri dari seksi driver sepanjang 1000 mm, seksi driven sepanjang 5300 mm. Pada seksi driven dipasang model facing step 50% dengan bahan alumunium sepanjang 300 mm. Empat unit sensor tekanan yang berfungsi untuk merekam profil tekanan sepanjang proses pembakaran dan empat unit ionisation probe yang berfungsi untuk mendeteksi waktu kedatangan flame front, dipasang masing - masing 2 unit di upstream dan 2 unit di downstream dari model dengan posisi saling berhadapan. Campuran bahan bakar untuk seksi driver yang digunakan pada eksperimen ini adalah campuran hidrogen dan oksigen dengan kondisi stokiometrik dan tekanan awal 100 kPa untuk menjamin terjadinya detonasi pada seksi driver, sedangkan pada seksi driven campuran bahan bakar yang digunakan adalah campuran hidrogen - oksigen dengan diluent argon pada variasi tekanan awal mulai 20 kPa hingga 100 kPa. Dari hasil penelitian diperoleh 3 mekanisme perambatan gelombang detonasi di belakang model.facing step 50%, yaitu a) Reinisiasi detonasi oleh adanya DDT, yaitu kondisi merambatnya kembali gelombang detonasi akibat proses deflagration to detonation transition di daerah downstream dari model setelah sebelumnya quenching detonasi akibat gelombang ekspansi, (b) Reinisiasi detonasi oleh adanya S-W, kondisi merambatnya kembali gelombang detonasi akibat adanya interaksi gelonbang kejut dengan dinding pipa, (c) transmisi detonasi, merupakan proses perambatan gelombang detonasi tanpa melalui proses quenching didaerah downstream dari model.

Downloads

Download data is not yet available.
Published
2020-02-25