PERBANDINGAN KARAKTERISTIK GAMBUT PALANGKARAYA YANG TELAH DISTABILISASI DENGAN BAKTERI BACILLUS SUBTILIS
DOI:
https://doi.org/10.35313/potensi.v25i2.5824Keywords:
Gambut, Microbially Indiced Calcite Precipitation (MICP), Bacillus Subtilis, StabilisasiAbstract
Indonesia merupakan negara dengan sebaran gambut terbanyak di Asia Tenggara. Luas lahan gambut di Indonesia mencapai 13.43 juta hektar yang tersebar di empat pulau besar di Indonesia. Pembangunan infrastruktur di lahan gambut memiliki banyak resiko karena karakteritik gambut yang buruk, seperti kadar air dan kadar serat yang tinggi, hingga daya dukung yang rendah. Oleh karena itu pada saat ini banyak penelitian yang dilakukan untuk meningkatkan karakteristik gambut berupa stabilisasi, hanya saja stabilisasi yang dilakukan banyak menggunakan bahan kimia yang dapat mencemari lingkungan. Pada dewasa ini, stabilisasi dengan bakteri dianggap lebih ramah lingkungan seperti stabilisasi dengan metode Microbially Induced Calcite Precipitation (MICP) menggunakan bakteri Bacillus subtilis. Proses stabilisasi dengan penambahan 7.5% larutan bakteri dapat meningkatkan kuat geser gambut dari 17.693 kPa menjadi 24.047 kPa. Peningkatan kuat geser pada gambut diikuti dengan perubahan karakteristiknya. Gambut yang berasal dari Kota Palangkaraya, Kalimantan Tengah memiliki karakteristik sebagai gambut berserat tipe hemic dengan kandungan abu yang tinggi kadar organik yang tinggi, tingkat keasaman yang tinggi, serta kemampuan penyerapan air yang sedang. Setelah dilakukan stabilisasi didapatkan karakteristik gambut menjadi gambut tidak berserat tipe sapric dengan kadar abu yang tinggi, kadar organik yang rendah, tingkat keasaman yang sedang, serta kemampuan penyerapan air yang rendah.
Downloads
References
J. Xu, P. J. Morris, J. Liu, and J. Holden, “PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis,†Catena, vol. 160, no. April 2017, pp. 134–140, 2018, doi: 10.1016/j.catena.2017.09.010.
L. Zigang and L. Xintu, “The Global Distribution Of Peat,†Encyclopedia of Life Support System, vol. II.
M. Anda, S. Ritung, E. Suryani, M. Hikmat, E. Yatno, Anny Mulyani, Rudi Eko Subandiono, Suratman, Husnain, “Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment,†Geoderma, vol. 402, no. June 2020, p. 115235, 2021, doi: 10.1016/j.geoderma.2021.115235.
L. J. Hua, S. Mohd, S.A.A. Tajudin, S.N. Ali Mohamad, I. Bakar, M.I. Mohd. A. Zainorabidin, A. Abdul-Wadoud Mahmod, “Construction of infrastructure on peat: Case studies and lessons learned,†MATEC Web of Conferences, vol. 47, pp. 0–5, 2016, doi: 10.1051/matecconf/20164703014.
X. Wang, X. Cao, H. Xu, S. Zhang, Y. Gao, Z. Deng, J. Li., “Research on the properties of peat soil and foundation treatment technology,†E3S Web of Conferences, vol. 272, pp. 2019–2022, 2021, doi: 10.1051/e3sconf/202127202019.
F. Syarif, G. Mahadika Davino, and M. Ferry Ardianto, “Penerapan Teknik Biocementation Oleh Bacillus Subtilis Dan Pengaruhnya Terhadap Permeabilitas Pada Tanah Organik,†Jurnal Saintis, vol. 20, no. 01, pp. 47–52, 2020, doi: 10.25299/saintis.2020.vol20(01).4809.
S. A. Nugroho, “Stabilisasi Tanah Gambut Riau Menggunakan Campuran Tanah Non Organik dan Semen Sebagai Bahan Timbunan Jalan,†Dinamaika Teknik Sipil, vol. 12, no. 2, pp. 151–156, 2012.
S. Islam and R. Hashim, “Bearing Capacity of Stabilised Tropical Peat by Deep Mixing Method,†2009.
I. R. K. Phang, K. S. Wong, Y. S. Chan, and S. Y. Lau, “Effect of microbial-induced calcite precipitation towards strength and permeability of peat,†Bull Eng Geol Environ, vol. 81, no. 8, p. 314, Aug. 2022, doi: 10.1007/s10064-022-02790-0.
A. Waruwu and T. H. Nasution, “Analisis Penurunan Tanah Gambut Dengan Timbunan Yang Diperkuat Grid Bambu Dan Tiang Beton,†vol. 37, no. 1, 2020.
M. A. Sultan, I. Imran, and M. Faujan, “Pengaruh Rendaman Asam Terhadap Kuat Tekan Beton Dengan Penambahan Fly Ash,†TJ, vol. 11, no. 1, p. 61, Apr. 2021, doi: 10.29103/tj.v11i1.367.
S. Islam and R. Hashim, “Stabilization of Peat by Deep Mixing Method: A Critical Review of the State of Practice,†Electronic Journal of Geotechnical Engineering, vol. 13, 2008.
S. Gowthaman, T. H. K. Nawarathna, P. G. N. Nayanthara, K. Nakashima, and S. Kawasaki, “The Amendments in Typical Microbial Induced Soil Stabilization by Low-Grade Chemicals, Biopolymers and Other Additives: A Review,†Building Materials for Sustainable and Ecological Environment, pp. 49–72, 2021, doi: 10.1007/978-981-16-1706-5_4.
L. Cheng, M. A. Shahin, and R. Cord-Ruwisch, “Soil Stabilisation by Microbial-Induced Calcite Precipitation (MICP): Investigation into Some Physical and Environmental Aspects,†7th International Congress on Environmental Geotechnics: ICEG 2014, vol. 64, no. 12, pp. 1105–1112, 2014.
D. Mujah, M. A. Shahin, and L. Cheng, “State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization,†Geomicrobiology Journal, vol. 34, no. 6, pp. 524–537, Jul. 2017, doi: 10.1080/01490451.2016.1225866.
G. El Mountassir, J. M. Minto, L. A. Van Paassen, E. Salifu, and R. J. Lunn, “Applications of Microbial Processes in Geotechnical Engineering,†in Advances in Applied Microbiology, vol. 104, Elsevier, 2018, pp. 39–91. doi: 10.1016/bs.aambs.2018.05.001.
T. Fu, A. C. Saracho, and S. K. Haigh, “Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review,†Biogeotechnics, vol. 1, no. 1, p. 100002, Mar. 2023, doi: 10.1016/j.bgtech.2023.100002.
N. Jiang et al., “Bioâ€mediated soil improvement: An introspection into processes, materials, characterization and applications,†Soil Use and Management, vol. 38, no. 1, pp. 68–93, Jan. 2022, doi: 10.1111/sum.12736.
M. Alavi, M. Taran, and A. Berimavandi, “Evaluation of stabilized soil by Bacillus sp. HAI4 in different conditions through Taguchi method,†Biological Journal of Microorganism 7 th Year, vol. 7, no. 28, pp. 11–19, 2019.
Forestry Policy and Resources Division, Peatlands Mapping and Monitoring - Recommendations and Technical Overview. Rome: Food and Agriculture Organization of the United Nations, 2020. doi: 10.4060/ca8200en.
F. Parish, A. Sirin, D. Lee, and M. Silvius, Assessment on Peatlands, Biodiversity and Climate change. Wegenigen: Global Environtment Centre & Wetlands International, 2008.
A. Almajed, M. A. Lateef, A. A. B. Moghal, and K. Lemboye, “State-of-the-art review of the applicability and challenges of microbial-induced calcite precipitation (Micp) and enzyme-induced calcite precipitation (eicp) techniques for geotechnical and geoenvironmental applications,†Crystals, vol. 11, no. 4, 2021, doi: 10.3390/cryst11040370.
Suriani and A. Muis, “Prospek Bacillus subtilis sebagai Agen Pengendali Hayati Patogen Tular Tanah pada Tanaman Jagung,†Jurnal Penelitian dan Pengembangan Pertanian, vol. 35, no. 1, p. 37, 2016, doi: 10.21082/jp3.v35n1.2016.p37-45.
Downloads
Published
How to Cite
Issue
Section
License
All papers published in Potensi: Jurnal Sipil Politeknik are under a CC-BY-SA or The Creative Commons Attribution-ShareAlike License.
All submitted papers must be original. Works that have been published are not under consideration for publication in other proceedings or scientific journals. Authors are responsible for obtaining all necessary permissions to reproduce tables, figures, and images. The paper must not contain defamation and must not violate any other rights of third parties.
Authors agree that the editorial board’s decision regarding the opportunity for paper presentation is final. Authors are prohibited from attempting to influence the technical team in efforts to have their paper published.
Before the final acceptance of the paper, authors are required to confirm in writing that they hold all copyrights to their paper and grant the publishing rights to Jurnal Potensi: Jurnal Sipil Politeknik.