Perancangan Mesin Pengolah Air Bersih Bergerak Dengan Menggunakan Sistem Modular Untuk Penaggulangan Keadaan Darurat Air

Yuliar Yasin Erlangga^a, Heri Setiawan^b

a Jurusan Teknik Perancangan Manufaktur, Politeknik Manufaktur Negeri Bandung, Bandung 40135 E-mail: uwie@polman-bandung.ac.id b Jurusan Teknik Manufaktur, Politeknik Manufaktur Negeri Bandung, Bandung 40135 E-mail: heris@polman-bandung.ac.id

ABSTRAK

Pengolahan air bersih (Water Treatment) dengan sistem pembuatan perangkat pengolahan air secara modular/mobile (compact mobile) merupakan pengembangan dari sistem penyaringan air dengan sistem "up flow" yang sudah dikembangkan oleh BPPT dengan penambahan dan perbaikan fungsi proses dalam upaya mengoptimalkan proses pengolahan air baku menjadi air bersih dan juga merupakan pengembangan baru dari perangkat pengolahan air sistim modular yang sudah dibuat sebelumnya. Pengembangan yang dilakukan pada penelitian ini yaitu dengan mengubah dari instalasi pengolahan yang tetap yang biasanya berbentuk civil work ke dalam sub fungsi-fungsi pengolah yang bersifat modular/mobile (compact mobile) dengan ukuran / dimensi yang tidak terlalu besar (compact design). Beberapa teknik dan parameter yang diterapkan di pengolahan sebelumnya dan secara fungsi sudah teruji masih tetap digunakan pada sistim ini, dengan artian desain yang direncanakan sebagian akan mengacu pada teknik pengolahan tersebut.

Keuntungan yang bisa didapatkan dari sistem tersebut terutama dalam segi penanganan selama proses pengolahan dan dalam hal penyediaan suku cadang. Waktu perbaikan preventif maupun kuratif saat penggantian sub fungsi bagian jauh akan lebih cepat sehingga diharapkan waktu perbaikan disaat terjadi kerusakan pada mesin pengolahan air bersih ini menjadi sangat singkat dan juga ukuran / dimensi dari perangkat ini yang cukup kecil (compact) sehingga mudah dalam pemindahan antar lokasi untuk keadaan darurat air.

Sub fungsi bagian yang diperlukan untuk melengkapi teknologi pengolahan air bersih yang sifatnya menunjang ditambahkan sebagai pelengkap dan bersifat compact juga. Pada akhir penelitian ini setelah melalui proses perancangan menurut VDI 2222 dan sudah dilakukan penilaian berdasarkan beberapa aspek maka terbangun sebuah prototipe modular mobile water treatment berkapasitas pengolahan 1 M² per jam yaitu rancangan nomer 2 dengan nilai 92%. Aspek terbarukan yang dipelajari adalah desain modular mobile water treatment itu sendiri, penentuan dan pemilihan solusi dari sub fungsi bagian serta bagaimana subsub fungsi bagian tersebut diikatkan pada rangka sehingga instalasi tersebut menjadi kompak untuk dijadikan sebagai mobile water treatment.

Kata Kunci

Compact mobile water treatment, up-flow filtering process

1. PENDAHULUAN

Sebagian besar kondisi masyarakat Indonesia masih bermasalah dengan air bersih. Masyarakat pada umumnya memanfaatkan air sumur untuk kebutuhan makan minum dan kegiatan MCK. Namun kualitas inputan sumber air dari sumur belum sesuai dengan standar yang ada. Hal ini akan sangat mengganggu kepada kesehatan masyarakat kalau dikonsumsi secara jangka panjang dan akan mengakibatkan dampak yang buruk terhadap aspek kehidupan yang lain (ekonomi, sosial dan juga budaya) (Effendi Hefni, 2003:11).

Dalam rangka meningkatkan kebutuhan dasar masyarakat mengenai kebutuhan akan air bersih, maka perlu diusahakan proses pengolahan dan pengelolaan air yang sesuai dengan karaktristik keadaan sekitar. Karakteristik utama yang perlu diperhatikan adalah sumber air baku yang tersedia serta pemilihan teknologi yang sesuai. Begitu banyak teknologi pengolah air minum (water treatment) vang telah dilakukan, namun masih ditemukan bermacam kendala yang berakibat pada tuntutan perbaikan, seperti : biaya yang relatif mahal, mekanisme yang statis (diam di tempat), energi pengolahan yang besar dan lain-lain (Herlambang, 2010). Beberapa tipe pengolahan air bersih yang teknologinya menyesuaikan dengan inputan air baku yang akan diolah seperti air laut, payau, danau, sungai dan sumur, dengan hasil keluaran yang diinginkan air bersih dan atau bahkan air minum (Said, dkk, 2005).

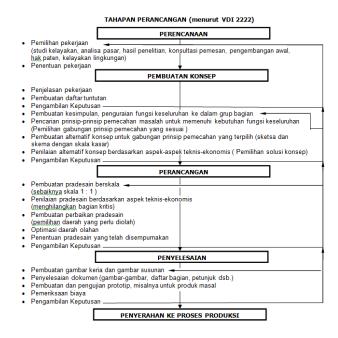
Salah satu teknologi pengolahan air bersih di pedesaan yang banyak diterapkan di Indonesia adalah teknologi saringan pasir lambat (sarpalam) konvensional (aliran dari atas ke bawah, down flow). Teknologi sarpalam yang lebih baik adalah sarpalam up flow (Herlambang & Said, 2005).

Teknologi sarpalam up flow telah diterapkan oleh Herlambang dan Said (2005) dengan menggunakan konstruksi sipil dengan kapasitas pengolahan 100 m3/hari. Sedangkan teknologi sarpalam yang pernah diterapkan dengan konstruksi mekanik adalah teknologi sarpalam down flow untuk sistim penjernih air sampai dengan siap minum yang mobil telah diaplikasikan oleh Indriatmoko & Widayat (2007). Teknologi ini menggunakan teknologi aerasi, koagulasi dan filtrasi.

Kualitas air ditentukan oleh banyak faktor, yaitu zat yang terlarut, zat yang tersuspensi, dan makhluk hidup, khususnya jasad renik, didalam air. Air murni, yang tidak mengandung zat yang terlarut, tidak baik bagi kehidupan. Sebaliknya zat yang terlarut ada yang bersifat racun. Apabila zat yang terlarut, zat yang tersuspensi dan makhluk hidup dalam air melebihi ketentuan yang berlaku, maka air tersebut disebut tercemar (Effendi Hefni, 2003).

Saat ini telah dibuat standar untuk menentukan kualitas air baik itu secara fisik, kimiawi dan biologi yang diterapkan oleh Kementrian Kesehatan R.I. dan badan kesehatan dunia (WHO). Berdasarkan standar tersebut, air yang layak untuk digunakan haruslah bebas dari kuman penyakit, bakteribakteri patogen, jernih, tidak berasa, berbau dan tidak korosif serta juga tidak meninggalkan endapan pada jaringan distribusi yang dilaluinya.

Dalam usaha mendapatkan kuantitas dan kualitas air bersih yang memenuhi standar diperlukan mesin pengolah, baik itu berupa proses kimia atau dengan metoda penyaringan dengan media pasir silika, pasir ziolit atau karbon aktif. Melihat pada beragamnya kondisi dan kapasitas air baku yang tersedia, serta beragam topografi dan kemudahan akses, maka diperlukan untuk mengembangkan mesin yang sudah ada menjadi sebuah mesin pengolah air yang dapat menghasilkan air bersih dengan desain yang compact mobile, mudah pengoprasiannya dan relatif murah, serta fleksibel dalam artian mudah dipindahkan, mudah dipasang, mudah ditingkatkan kapasitasnya dan mudah dalam pemeliharaannya.


2. TINJAUAN PUSTAKA

Metode Perancangan

Proses pemecahan masalah yang optimal memerlukan tahapan kerja yang sistematik. Pekerjaan yang ada dapat dirumuskan dengan benar dan keterkaitan fungsi produk teknik yang dirancang dapat dimengerti dengan mudah. Metoda perancangan yang digunakan adalah Verein Deutsche Ingenieuer (VDI 2222) seperti diperlihatkan pada gambar 1.

2.1.1 Perencanaan

Tahap perencanaan dilakukan sebagai awal dalam menentukan langkah kerja yang harus dilakukan dengan baik dan sistematik. Beberapa faktor yang berpengaruh dalam melakukan analisa berupa pemilihan pekerjaan diantaranya studi kelayakan, analisis pasar, konsultasi pemesan, hak paten, kelayakan lingkungan, dan dilanjutkan dengan penentuan pekerjaan.

Gambar 1: Metode Perancangan VDI 2222

2.1.2 Pembuatan konsep

Dalam tahap pembuatan konsep, beberapa aktivitas yang berhubungan dengan perancangan tool dilakukan berdasarkan spesifikasi produk yang telah ditetapkan. Beberapa tindakan yang dilakukan dalam pembuatan konsep:

a. Penjelasan pekerjaan

Merupakan rumusan masalah atau tugas. Memperjelas masalah atau tugas yang akan diproses secara logis.

b. Pembuatan daftar persyaratan

Daftar persyaratan dibuat untuk memudahkan dalam proses perancangan, sehingga konstruksi yang dirancang tercapai secara maksimal. Dalam daftar persyaratan terdapat batasan-batasan yang harus diperhatikan dan dipenuhi.

Perancang menguraikan data-data teknis rancangan seperti data fungsi, dimensi dan operasional berdasarkan permintaan pemesan.

a. Pembagian fungsi

Rancangan dikelompokkan berdasarkan fungsi, dimensi atau bentuk sesuai daftar tuntutan.

b. Pembuatan alternatif fungsi bagian

Alternatif fungsi bagian dibuat sebagai bentuk lain dari fungsi yang telah ada yang bertujuan menghasilkan beberapa alternatif dari fungsi bagian disertai kelebihankelebihan maupun kekurangan-kekurangan dari setiap alternative tersebut.

c. Pembuatan variasi konsep

Variasi konsep merupakan penggabungan beberapa alternatif yang dibuat sehingga membentuk suatu fungsi bagian.

d. Penilaian variasi konsep konstruksi

Variasi konsep yang ada dinilai berdasarkan aspekaspek pada fungsi, kemudahan pembuatan, kemudahan penanganan, kemudahan perakitan, kemudahan perawatan dan biaya yang murah.

e. Pembuatan konsep pemecahan

Hasil dari penilaian yang terbaik dijadikan sebagai konsep pemecahan.

2.1.3 Perancangan

Berdasarkan konsep pemecahan, dilakukan perancangan konstruksi dengan memperhatikan beberapa faktor, yaitu:

- Fungsi (function)
- Pembuatan (manufacture)
- Penanganan (handling)
- Perakitan (assembling)
- Perawatan (maintenance)
- Biaya (cost)

Hasil rancangan ditampilkan berupa gambar draft, perhitungan konstruksi dilakukan berdasarkan gambar draft untuk mencapai hasil rancangan yang diinginkan.

2.1.4 Penyelesaian

Setelah rancangan selesai, maka tahap penyelesaian akhir yang harus dilakukan adalah sebagai berikut :

- Pembuatan gambar susunan
- Pembuatan gambar bagian
- Pembuatan daftar bagian

2.2 Umum

Air bersih yang biasa digunakan sehari-hari biasanya berasal dari sumber-sumber air bersih yang ada di alam kemudian diolah untuk mencapai standar kualitas tertentu. Sumber-sumber air bersih yang biasa digunakan adalah air laut, air hujan, air permukaan (air sungai, air rawa/danau), air tanah (air tanah dangkal, air tanah dalam dan mata air) (Sutrisno, 2006).

Mengacu pada Peraturan Mentri Keehatan No. 416 Tahun 1990, tentang syarat-syarat Dan Pengawasan Kualitas Air yang dimaksud dengan air bersih adalah air yang digunakan untuk keperluan sehari-hari yang kualitasnya memenuhi syarat kesehatan dan dapat diminum apabila telah dimasak. Kualitas air harus memenuhi syarat kesehatan yang meliputi persyaratan mikrobiologi, fisika, kimia dan radioaktif.

2.3 Koloid

2.3.1 Karakteristik Koloid

Ciri Penting dari suatu koloid padat yang terdispensi (tersebar) dalam air yaitu partikel-partikel padat yang tidak akan mengendap karena gaya gravitasi. Ukuran partikelnya berkisar 0,1 milimikron (0,1x10-4) sampai 100 mikron (0,1x10-6). Karena koloida-koloida ukuran partikelnya berkisar satu milimikron sampai satu mikron, maka pecahan dari zat padat yang tidak biasa mengendap ini merupakan partikel koloid (Reynold 1982).

2.3.2 Mekanisme Destabilisasi Koloid

Kestabilan koloid tergantung pada resultan gaya tarik menarik dan gaya tolak menolak yang bekerja pada partikel -partikel koloid. Kation tertarik oleh anion partikel koloid tersebut, sedangkan anion yang lain akan tertolak setelah maksimum adsorbs tercapai. Keseimbangan tercapai apabila sejumlah kation mendekati permukaan koloid yang bermuatan negatif (anion), sedangkan ion lainnya terdistribusi pada lapisan selanjutnya. Pada jarak tertentu dari permukaan koloid akan terdapat konsentrasi anion dan kation yang sama besar sehingga suasana netral.

2.3.3 Koagulasi dan Flokulasi

Agar terjadi tumbukan antar partikel koloid, maka daya tolak menolak diantara partikel-partikel yang bermuatan negatif harus dinetralkan dengan menambahkan koagulan vang bermuatan positif (Linvil, 1965). Proses penambahan tersebut dinamakan koagulasi. Eichekenfelder 1985, koagulasi adalah proses kimia yang digunakan untuk menghilangkan bahan cemaran yang tersuspensi atau dalam bentuk koloid.

Bila koagulan dibubuhkan dalam larutan, ion lawan akan tertarik ke permukaan partikel dan masuk kedalam lapisan listrik sehingga konsentrasi dalam lapisan listrik naik dan lapisan terdifusi akan menjadi padat. Hal itu menyebabkan gaya tarik akan dominan. Jika pemampatan yang terjadi

sudah mencukupi maka gaya tarik Van Der Walls dapat meningkat, jika terjadi kontak antar partikel.

Kontak antar partikel dapat terjadi karena adanya proses flokulasi. Flokulasi menurut IUPAC adalah proses kontak dan adhesi antara partikel sehingga membentuk partikel dengan ukuran yang lebih besar. Partikel yang berada dalam keadaan tidak stabil akan cepat tergumpal. Akan tetapi apabila semua partikel dalam keadaan tidak stabil, maka proses flokulasi akan berjalan lambat. Untuk memungkinkan terjadinya penetralan partikel bermuatan oleh logam Trivalen yang bermuatan positif, maka konsentrasi muatan harus cukup agar gaya tarik menarik antar muatan yang berlawanan akan meningkat. Cara memperkecil jarak antar partikel atau menambah frekuensi tumbukan antar partikel adalah dengan pemberian gaya atau poer input sehingga air tersebut mengalami turbulensi.

2.3.4 Sedimentasi

Sedimentasi adalah pemisahan padatan dan cairan dengan menggunakan pengendapan secara gravitasi memisahkan partikel tersuspensi yang terdapat dalam cairan tersebut (Reynols, 1982). Proses ini sangat umum digunakan pada instalasi pengolahan air minum. Aplikasi utama dari sedimentasi pada instalasi pengolahan air minum adalah:

- 1. Pengendapan awal dari air permukaan sebelum pengolahan oleh unit saringan pasir cepat.
- 2. Pengendapan air yang telah melalui proses koagulasi dan flokulasi pada instalasi yang menggunakan sistim pelunakan air oleh kapur-soda.

2.3.5 Filtrasi

Filtrasi adalah proses pengolahan yang dipakai untuk memisahkan materi-materi padatan (kotoran) berupa suspended solid (zat padat tersuspensi) dengan melewatkan air melalui suatu media. Melalui filter ini kualitas air dapat mencapai turbiditas kurang dari 0.1 NTU. Walaupun kurang dari 90% kekeruhan dan warna dipisahan dalam koagulasi dan sedimentasi, namun sejumlah flok masih terbawa keluar dan ini memerlukan pemisahan lebih lanjut (Linvil, 1963).

2.3.6 Desinfeksi

Desinfektan didefinisikan sebagai bahan kimia atau pengaruh fisika yang digunakan untuk mencegah terjadinya infeksi atau pencemaran jasad renik seperti bakteri anti virus, juga untuk membunuh atau menurunkan jumlah mikroorganisme atau kuman penyakit lainnya (Skima, 2008). Umumnya pada instalasi klor akan diperoleh dalam bentuk padatan dengan rumus kimia (Ca(OCl)2. Sebelum dibubuhkan ke dalam air baku klor ini akan dilarutkan terlebih dahulu dalam air. Penggunaan klor secara luas untuk desinfeksi air karena (Linvil, 1963) mudah diperoleh

baik dalam bentuk padat, cair maupun gas, selain itu hargannya yang relative murah juga mudah diterapkan karena kelarutannya relatif tinggi (7000mg/l), dapat memberikan sisa klor dalam batas (0.2 s.d. 0.5 mg/l) yang tidak membahayakan manusia.

2.3.7 Parameter Kualitas Air

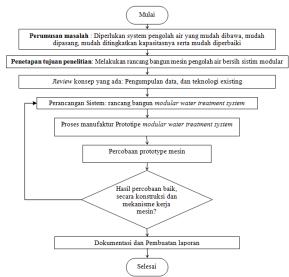
Pemeriksaan kualitas air dilakukan terhadap parameterparameter penting yang dapat menggambarkan karakteristik dari air tersebut sesuai dengan tujuan pemeriksaan. Parameter-parameter yang diukur adalah: kekeruhan, warna, pH, Besi, Detergen dan Zat Organik.

3. METODOLOGI

Penelitian ini melakukan perancangan dan pembuatan prototipe mesin pengolah air bersih sistem mampu pindah (mobile) untuk kepentingan saat bencana (darurat air). Penelitian difokuskan pada penyempurnaan dari hasil penelitian sebelumnya, yaitu pada konsep rancangan dan jenis teknologi yang digunakan. Penyempurnaan rancangan dilakukan terutama pada hal mengatasi masalah-masalah : kualitas air yang sangat berhubungan dengan teknologi proses, laju aliran air yang menentukan kapasitas produksi pengolahan air berupa debit dan juga dari segi rancang bangun untuk mencapai tujuan yang diinginkan yaitu berbentuk modular. Modularitas yang dimaksud tidak hanya pada unit keseluruhannya, tetapi juga pada setiap fungsi bagiannya agar mudah untuk dilepas pasang dari instalasi keseluruhan.

Untuk mengurangi aktifitas manufaktur dan meminimalkan biaya yang digunakan, diharapkan banyak menggunakan part standar termasuk didalamnya adalah tangki untuk penyadap air, ventury, konstruksi pengatur dosis, static mixer, filter dan juga penampung air olahan yang berupa air bersih.

Mesin instalasi pengolah air ini terbagi menjadi beberapa sub fungsi bagian, dimana masing-masing sub fungsi bagian ini mempunyai kekhususan fungsi dan harus merupakan kesatuan tersendiri yang mampu dibongkar pasang dengan tidak menggangu fungsi bagian lain. Hubungan satu dengan yang lainnya didefinisikan dengan sistem masukan dan luaran setelah melalui proses pengolahan per fungsi bagian tersebut. Fungsi bagian tersebut terdiri dari:



Gambar 2: Fungsi Bagian

Perancangan sistem diteliti mengacu kepada konsep-konsep yang sudah ada dan dimodifikasi dengan kriteria dan prasyarat yang sudah ditentukan seperti luaran air yang baik , kapasitas air, indikator-indikator hasil olahan air yang harus mengacu pada standar baku mutu air.

Perancangan manufaktur didesain sedemikian rupa sehingga mencapai tujuan yang yang diinginkan yaitu mudah untuk dipindakan (portable) dengan kapasitas air yang cukup signifikan untuk kebutuhan hidup per hari. Kemudian seluruh parameter rancangan akan diterapkan pada pembuatan prototipe dan hasilnya di analisis.

Berikut ini adalah diagram alir langkah-langkah pelaksanaan penelitian.

Gambar 3: Diagram alir

4. PROSES PERANCANGAN

4.1 Fungsi Bagian Rangka

Rangka yang dibuat dipilih berdasarkan beberapa alternatif seperti tabel 1 berikut:

Tabel 1: Alternatif fungsi bagian rangka

Fungsi Bagian	Alt. 1	Alt. 24.1	Alt. 3	Alt. 4
	DI BAUT	DI LAS	DI KELING	DI COR
RANGKA			Figure 1 and	

4.2 Fungsi Bagian Pre-filter

Proses pre-filter dipilih berdasarkan beberapa alternatif seperti tabel berikut:

Tabel 2: Fungsi bagian pre-filter

4.3 Fungsi Bagian Koagulasi

Proses koagulasi dipilih berdasarkan beberapa alternatif seperti tabel berikut:

Tabel 3: Alternatif fungsi bagian koagulasi

Fungsi Bagian	Alt. 1	Alt. 2	Alt. 3	Alt. 4
KOAGULASI	PAC	TiO2 + UV Matter branching Base Mail Base	ELEKTROMAGNETIK ION Fe/Mg	DNA ENZYM

4.4 Fungsi Bagian Flokulasi

Proses Flokulasi dipilih berdasarkan beberapa alternatif seperti tabel berikut:

Tabel 4: Alternatif fungsi bagian flokulasi

Fungsi Bagian	Alt. 1	Alt. 2	Alt. 3	
FLOKULASI	ZIG - ZAG	PENGADUKAN	SELANG	

4.5 Fungsi Bagian Sedimentasi

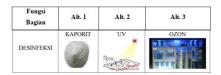
Proses Sedimentasi dipilih berdasarkan beberapa alternatif seperti tabel berikut:

Tabel 5: Alternatif fungsi bagian sedimentasi

Fungsi Bagian	Alt. 1	Alt. 2
	TANK	SARANG TAWON
SEDIMENTASI		

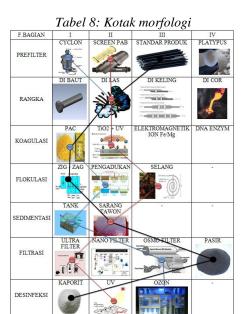
4.6 Fungsi Bagian Filtrasi

Proses koagulasi dipilih berdasarkan beberapa alternatif seperti tabel berikut:

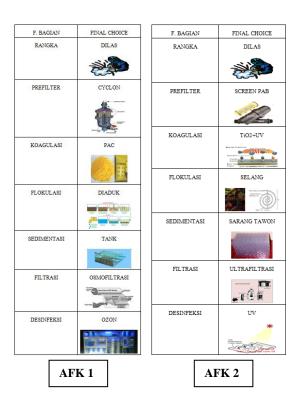

Tabel 6: Alternatif fungsi bagian filtrasi

Fungsi Bagian	Alt. 1	Alt. 2	Alt. 3	Alt. 4
FILTRASI	ULTRA FILTER	NANO FILTER	OSMO FILTER	PASIR

4.7 Fungsi Bagian Desinfeksi


Proses koagulasi dipilih berdasarkan beberapa alternatif seperti tabel berikut:

Tabel 7: Alternatif fungsi bagian desinfeksi


4.8 Pembuatan Variasi Konsep

Setelah pembagian fungsi dibuatkan variasi-variasi yang merupakan gabungan dari fungsi-fungsi bagian tersebut.

4.9 Alternatif Fungsi Keseluruhan

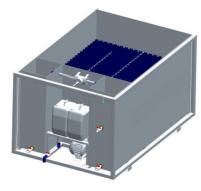
Adapun variasi-variasi konsep yang ada diterjemahkan kembali seperti terlihat pada gambar 4 dibawah:

Gambar 4: Alternatif fungsi keseluruhan

4.10 Penilaian Alternatif Fungsi Keseluruhan

Ketiga alternatif tersebut dinilai untuk memperoleh alternatif fungsi keseluruhan terbaik.

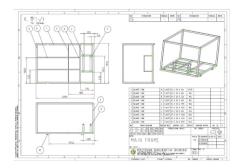
Tabel 9: Kriteria penilaian variasi prinsip


	PENILAIAN							
PARAMETER	l Sangat Buruk	2 Buruk	3 Cukup	4 Balk	5 Sungat Baik			
Fungsi / Konstruksi	Konstruksi sangat rumit dari segi bentuk, <i>profil</i> dan fungsi bagian	Konstruksi rumit dari segi bentuk, <i>profil</i> dan fungsi bagian	Konstruksi sederhana dari segi bentuk, profil, tetapi fungsi bagian rumit .	Konstruksi sederhana dari segi bentuk, profil dan fungsi bagian sedikit rumit.	Konstruksi sangat sederhana dari segi bentuk, profil dan fungsi bagian.			
Proses Manufaktur / Pemesinan	Pembuatan tool sangat sulit untuk dilakukan. Sangat banyak menggunakan teknologi modern	Pembuatan tool sulit untuk dilakukan. Cukup banyak menggunakan teknologi modern	Pembuatan tool relatif mudah untuk dilakukan. Menggunakan sedikit mesin konvensional dan sedikit teknologi modern.	Pembuatan tool mudah untuk dilakukan. Menggunakan cukup banyak mesin konvensional dan sangat sedikit teknologi modern.	Pembuatan tool sangat mudah untuk dilakukan. Seluruh proses menggunakan mesin konvensional tanpa teknologi modern.			
Penanganan / Handling	Sangat lama dan sangat sulit. Butuh operator dengan kemampuan sangat tinggi.	Lama dan sulit. Butuh operator dengan kemampuan cukup tinggi.	Relatif cepat. Butuh operator dengan kemampuan sedang	Cepat dan hanya membutuhkan operator dengan kemampuan sedang	Sangat cepat dan culcup dengan operator rendah			
Perakitan	Perakitan harus dilakukan menggunakan alat bantu perakitan dan menggunakan metoda tertentu	Perakitan sebagian dilakukan menggunakan alat bantu perakitan dan tidak mudah dilepas pasang	Perakitan dapat dilakukan dengan cukup mudah secara manual tetapi tidak mudah lepas pasang.	Perakitan dapat dilakukan dengan mudah secara manual dan sebagian dapat dilepas pasang	Perakstan dapat dilakuka dengan sangat mudah secara manual dan hampi selumah bagian dapat dilepas pasang			
Perawatan	Membutuhkan perawatan sangat ekstra dansangat rumit	Membutuhkan perawatan ekstra dan rumit	Membutuhkan perawatan yang cukup namun rumit.	Membutuhkan perawatan yang sedikit dan cukup sederhana	Membutuhkan perawatan yang sangat sedikit dan sangat sederhana			
Ekonomis	Biaya pokok pembuatan sangat mahal	Biaya pokok pembuatan mahal	Biaya pokok pembuatan sedang	Biaya pokok pembuatan murah	Biaya pokok pembuatan sangat murah			
Berat	Sangat berat. Membutuhkan alat angkat berat besar dan mahal untuk pemindahan.	Berat dan membutuhkan alat angkat berat cukup besar untuk pemindahan	Cukup berat dan membutuhkan alat angkat sedang untuk pemindahan	Relatif ringan dan membutuhkan alat angkat kesil untuk pemindahan	Ringan, modular dan dapat diangkat oleh tenaga manusia dan alat angkat kecil			

Tabel 10: Penilaian variasi prinsip

No	Aspek Yang Dinilai	Bobot	AFK			Nilai Ideal
		(%)	AFK 1	AFK 2	AFK 3	What Recar
1	Fungsi	50	4	5	5	5
2	Manufaktur	15	3	3	4	5
3	Penanganan	10	4	3	5	5
4	Perakitan	10	3	3	4	5
5	Perawatan	5	4	3	4	5
6	Biaya	5	1	2	3	5
7	Berat	5	5	5	5	5
	Nilai total: ((Nilai AFK) x (Bobot)) / 100			4.05	4,6	5,00
Prosentase: <u>Nilai total AFK x 100</u> <u>%</u> Nilai ideal total			73 %	81 %	92 %	100 %

4.11 Konsep Pemecahan


Berdasarkan aspek-aspek penilaian fungsi sebelumnya, maka fungsi kombinasi dari variasi konsep yang paling ideal dari ketiga alternatif fungsi keseluruhan adalah alternatif 3, dengan prosentase 92 %, sehingga berdasarkan hasil tersebut dipilih rancangan-rancangan berdasarkan fungsi-fungsi dari alternatif 2.

Gambar 5: Rancangan terpilih

4.12 Pembuatan Draft Rancangan, Gambar Susunan dan Gambar Bagian

Tahapan penyelesaian akhir yang harus dilakukan adalah melakukan penggambaran gambar kerja detail dan gambar kerja susunan, yang nantinya akan digunakan sebagai informasi pada proses manufaktur. Selain itu gambar kerja detail dan gambar kerja susunan dapat juga dijadikan sebagai dokumen teknik.

Gambar 6: Contoh dokumen teknik

5. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Proses perancangan dan pembuatan compact mobile water treatment ini dapat terlaksana dan dapat diwujudkan menjadi sebuah produk yang diharapkan memiliki nilai guna bagi masyarakat khususnya yang mengalami keadaan darurat air

5.2 Saran

- Dilakukan penelitian untuk penentuan waktu yang tepat untuk melakukan backwash, dilihat dari nilai kekeruhan air olahan. Sehingga dapat ditentukan setelah pemakaian berapa kali backwash harus dilakukan.
- Pada penelitian selanjutnya perlu dikembangkan pengkajian menggunakan kontrol otomatis pada Mesin Pengolah Air Bersih Sistem mampu pindah ini.
- Perlu dikembangkan pengkajian terhadap waktu proses, sehingga dapat mempercepat proses pengolahan air besih. Mesin Pengolah Air Bersih Sistem Modular menghasilkan output 1M3/jam.

DAFTAR PUSTAKA

- [1] Anonim. *Water Chemistry & Treatment*. http://www.water-chemistry.in_. (19 Juli 2011).
- [2] Departemen Kesehatan RI. Keputusan Menteri Kesehatan RI Nomor 907/MENKES/ SK/VII/2002 tentang syarat-syarat dan pengawasan kualitas air minum. Jakarta: Departemen Kesehatan RI, 2002.

- [3] H. Effendi. Telaah kualitas Air bagi Pengelolaan Sumber Daya dan Lingkungan Perairan. Yogyakarta: Kanisius, 2003
- [4] A. Herlambang. "Teknologi Penyediaan Air Minum Untuk Keadaan Tanggap Darurat". Jurnal Air Indonesia, Vol.6, No.1, 2010.
- [5] R.H. Indriatmoko dan W. Widayat. "Penyediaan Air Minum Pada Situasi Tanggap Darurat Bencana Alam". Jurnal Air Indonesia, Vol.3, No.1, 2007.
- Ministry of environment and forests. Status Of Water Treatment Plans In India. http://www.cpcb.nic.in. (3 Agustus 2011).
- [7] P. N. Raharjo. "Aplikasi Teknologi Pengadaan Air Bersih di Empat Desa Tertinggal di Bengkulu Selatan". Jurnal Air Indonesia, Vol.3, No.1, 2007.
- [8] Said, Nusa Idaman, Indriatmoko, Robertus Haryoto, Raharjo, P. Nugro, dan Herlambang, Arie. "Aplikasi teknologi pengolahan air sederhana untuk masyarakat pedesaan". Jurnal Air Indonesia, Vol.1, No.2, 2005.