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Abstract 
 
To take into account higher-mode effects in pushover analysis for estimating the seismic demands of high-rise 
building structures, the multimode load pattern (MLP) procedure has been proposed. The multimode load 
pattern analyses were carried out with the force distributions using mode-shapes obtained from Eigen-analysis 
of linearly elastic structure and the pushover analysis were done consecutively, such that first mode pushover 
analysis has performed, the next mode begins with the initial structural stage (stress and deformation) which is 
the same as the condition at the end of previous stage. Predictions based on single mode and response spectrum 
analysis procedures were also presented for the sake of comparison to those obtained by the MLP  procedure. 
The implication of using multimode and single mode in MLP  analysis, the higher modes in the MLP analysis 
strongly affect the responses at the mid and upper storey of tall building structures, contrary to the lower storey 
thus gives better prediction of storey drift and plastic hinge for mid and upper storey. From the comparison to 
each capacity curves in term of analysis procedure performance, MLP gives better results to describe the 
structure performance in handling earthquake force. 

Keywords : multimode load pattern, pushover analysis, seismic demands. 

 

I.INTRODUCTION 
 

Both structural damage and nonstructural damage 
sustained during earthquake ground motions are 
primarily produced by lateral displacement demands. 
While nonlinear response history analysis (NL-RHA) 
is the most rigorous procedure to compute seismic 
demands, current civil engineering practice prefers to 
use nonlinear static procedures (NSP) based on 
pushover analysis (POA). POA essentially developed 
from response spectrum analysis (RSA). POA is 
controlled by the fundamental vibration mode of the 
structure, and the mode shape remains unchanged 
after the structure yields. Obviously, the POA does not 
account for the contribution of higher modes to the 
structural response; therefore it is difficult to apply to 
high-rise buildings in which higher-mode 
contributions to the response are important. The main 
objective of the present study is therefore to propose 
and investigate the multimode load pattern (MLP) 
which can take into account higher-mode effects in the  

 
 
 
 
POA of tall buildings and can improve estimates of 
seismic demands mainly storey drift ratio, plastic 
hinge rotation and displacement. 

 
1.METHODOLOGY 

 
To demonstrate applicability and effectiveness of the 
MLP, the procedure has been applied to symmetric 
multistory three-dimensional steel building frames. 
The structures considered were three-bay frames with 
four different heights of 10, 15, 20, and 30 storey, 
covering a wide range of fundamental periods. The 
frame structures were 5 m bays and a storey height of 
3.2 m. The structures were assumed to be founded on 
type `IV' soft soil of the Indonesian seismic code (SNI 
03-1726-2002), and located in the region of highest 
seismicity. The MLP analyses are carried out using 
force distributions according to the mode-shapes 
obtained from Eigen-analysis of linearly elastic 
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Figure 3. 
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Figure 6. Plastic hinge rotation for 20 and 30 storey 

frame 
 
Figure 5 and Figure 6 show the plastic hinge rotation 
resulting from pushover analyses in MLP, as well as 
from SM and RSA procedures for 10-15 and 20-30 
storey frame.As shown in plastic hinge rotation 
figures, MLP control the plastic hinge rotations 
especially at the mid and upper floors. At some lower 
floor levels, the MLP procedure tends to slightly 
overestimate the plastic rotation of the hinges 
compared to other procedures.At some lower floor 
levels, the MLP procedure occasionally provides 
better estimates of plastic hinge rotations than the 
other procedure, and vice versa. Also, the MLP 
procedure tends to slightly overestimate the plastic 
rotation of the hinges at some lower floor levels. 
 
The consecutive implementation of modal pushover 
analysis means that rotations of the plastic hinges are 

continuously accumulated at mid and upper floor level 
during the modes of interest in MLP analysis, while 
other method procedure attempts to estimate the total 
response quantities by combining the individual peak 
responses obtained separately from each mode. 
 
 
1.3 Capacity Curve 
 
In pushover analysis simulation all structures were 
being push until displacement on the roof was equal as 
0.04 of the total building height or until first critical 
plastic hinge rotation was formed in the structure.The 
curves in Figure 7 and Figure 8 depicted in the 
figures defined as relationships between the lateral 
load-carrying capacity (or base shear) and the roof 
displacement of the building for 10-15 and 20-30 
storey. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Capacity curve for for 10 and 15 storey 

frame 
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Figure 8. Capacity curve for for 20 and 30 storey 

frame 
 
 
Capacity curve resulted from MLP procedure [see in 
Figure 7 and Figure 8] shows ductile behavior where 
there is an elastic range followed by a plastic range 
with non-negligible residual strength and ability to 
support gravity loads. The plastic range includes a 
strain hardening or softening range and a strength-
degraded range. Different for 30 storey analysis, 
capacity curve shows that the structure experiencing 
ductile behavior where there is an elastic range and a 
plastic range followed by loss of strength and loss of 
ability to support gravity loads. 
 
The MLP distribution generally leads to pushover 
curve with higher elastic stiffness, higher yield 
strength, lower yield displacement, and more rapid 
decay in post-yield lateral capacity compared to other 
distributions. 
 

The RSA distribution, on the other hand, leads to 
pushover curve with lower elastic stiffness, lower 
yield strength, higher yield displacement, and a more 
gradual decay in post-yield lateral capacity. 
 

 
2.CONCLUDING REMARKS 
 
The implication of using multimode with consecutive 
manner in multimode load pattern analysis, Its show 
that the higher modes in the MLP analysis strongly 
affect the responses at the mid and upper storey of tall 
buildings, contrary to the lower storey. From the 
comparison to each capacity curves in term of analysis 
procedure performance, MLP also can describe 
structure performance in handling earthquake force. 
 
As the preliminary study, It is demonstrated that the 
MLP procedure is able to predict the structure respond 
to the earthquake excitation for mid and upper storey. 
 
In order to confirm the conclusion above with greater 
certainty, the MLP procedure should be verified for 
different lateral force-resisting system, reinforced 
concrete buildings, and variety of ground motion sets. 
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