Sintesis dan Karakterisasi Lithium Iron Phosphate (LiFePO4) Menggunakan Metoda Solid State Reaction Sebagai Katoda Pada baterai Lithium-Ion

Main Article Content

Oki Putra
Rusdan Fadila
Eko Andrijanto
Dian Ratna Suminar

Abstract

ABSTRAK


 Perkembangan baterai tak luput dari kebutuhan energi yang kian meningkat. Meskipun sumber energi tidak terpaku pada baterai, namun baterai banyak diminati karena dapat menampung cukup banyak energi, relatif aman, dan bersifat portable. Penelitian ini bertujuan untuk mensintesa dan mengetahui karakteristik salah satu jenis katoda baterai lithium-ion yaitu Lithium Iron Phosphate (LiFePO4) dengan variasi mol reagent berdasarkan perbandingan stoikiometri dan suhu proses kalsinasi 600°C, 700°C, dan 800°C selama 3x3 jam menggunakan metode solid state reaction dengan Li2SO4.H2O, FeSO4.7H2O, dan KH2PO4 sebagai reagent. Produk hasil kalsinasi 800°C dengan variasi 0.1 mol dijadikan sampel untuk dianalisa dan dikarakterisasi karena memiliki penurunan berat endapan BaSO4 tertinggi. Hasil karakterisasi menggunakan FTIR menunjukan gugus fungsi P-O yang cukup kuat, sementara hasil karakterisasi menggunakan SEM/EDX menunjukan partikel yang terbentuk memiliki ukuran sekitar 160nm hingga 14µm dan terdapat atom S yang merupakan impurities dalam produk. Pola difraksi hasil uji XRD menunjukan terbentuknya sejumlah fasa seperti LiFePO4, LiFeP2O7, dan Li3PO4.


 


ABSTRACT


 The development of batteries is inseparable from the increasing energy needs. Although energy sources are not available for batteries, batteries are in great demand because they can store a lot of energy, are relatively safe, and are portable. This study aims to synthesize and determine the characteristics of one type of lithium-ion battery cathode, namely Lithium Iron Phosphate (LiFePO4) with various mole reagents based on stoichiometric ratios and calcination process temperatures of 600oC, 700oC, and 800oC for 3x3 hours using the solidstate reaction method with Li2SO4.H2O, FeSO4.7H2O, and KH2PO4 as reagents. The 800oC calcined product with 0.1 mol variation was sampled for analysis and characterization because it had the highest weight loss of BaSO4 deposits. The results of characterization using FTIR showed that the functional group P-O are quite strong, while the results of characterization using SEM/EDX showed that the particles formed had a size of about 160nm to 14µm and contained S atoms which were impurities in the product. The diffraction pattern of XRD test results shows the formation of phase numbers such as LiFePO4, LiFeP2O7, dan Li3PO4.

Downloads

Download data is not yet available.

Article Details

How to Cite
Putra, O., Fadila, R., Andrijanto, E., & Suminar, D. R. (2021). Sintesis dan Karakterisasi Lithium Iron Phosphate (LiFePO4) Menggunakan Metoda Solid State Reaction Sebagai Katoda Pada baterai Lithium-Ion. Fluida, 14(2), 42-49. https://doi.org/10.35313/fluida.v14i2.2632
Section
Articles

References

Cho, S. J., Uddin, M. J., & Alaboina, P. (2017). Review of nanotechnology for cathode materials in batteries. Emerging nanotechnologies in rechargeable energy storage systems (pp. 83-129). Elsevier.
Jugović, D., & Uskoković, D. (2009). A review of recent developments in the synthesis procedures of lithium iron phosphate powders. Journal of Power Sources, 190(2), 538-544.
Karuppasamy, K., Jothi, V. R., Nichelson, A., Vikraman, D., Tanveer, W. H., Kim, H. S., & Yi, S. C. (2020). Nanostructured transition metal sulfide/selenide anodes for high-performance sodium-ion batteries. In Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems (pp. 437-464). Elsevier.
Li, W., Hwang, J., Chang, W., Setiadi, H., Chung, K. Y., & Kim, J. (2016). Ultrathin and uniform carbon-layer-coated hierarchically porous LiFePO4 microspheres and their electrochemical performance. The Journal of Supercritical Fluids, 116, 164-171.
Linden, David & Thomas B. Reddy. (2002). Handbook of Batteries 3 Ed. Amerika Serikat: The McGraw-Hills Companies, Inc.
Mareta, F. (2018). Efek Waktu Penahanan Kalsinasi Terhadap Katoda LiFePO4/C Doping Ni. (Undergraduate thesis, Institut Teknologi Sepuluh Nopember). Diakses dari https://repository.its.ac.id/50399/
Orliukas, A. F., Fung, K. Z., Venckutė, V., Kazlauskienė, V., Miškinis, J., Dindune, A., & Kežionis, A. (2014). SEM/EDX, XPS, and impedance spectroscopy of LiFePO4 and LiFePO4/C ceramics. Lithuanian Journal of Physics, 54(2).
Padhi, A. K., Nanjundaswamy, K. S., & Goodenough, J. B. (1997). Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society, 144(4), 1188.
Richardson, J. W., Pluth, J. J., & Smith, J. V. (1988). Rietveld profile analysis of calcined AlPO4-11 using pulsed neutron powder diffraction. Acta Crystallographica Section B: Structural Science, 44(4), 367-373.
Rohib., & Wahyuadi, S. J. (2013). Studi Ekstraksi Litium Dari Mineral Sugilite Dengan Metode Roasting Menggunakan Kalium Sulfat (K2SO4) dan Pelindian Air. Metalurgi dan Material, 70-72.
Ruksudjarit, A., Pengpat, K., Rujijanagul, G., & Tunkasiri, T. (2008). Synthesis and characterization of nanocrystalline hydroxyapatitefrom natural bovine bone. Current applied physics, 8(3-4), 270-272.
Sabrina, G. J., & Supardi. Z.A.I. (2019). Sintesis dan Karakterisasi Material Katoda LiFePO4 pada Baterai Lithium Ion. Jurnal Inovasi Fisika Indonesia (IFI) Volume 8(3), 58-61.
Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of power sources, 195(9), 2419-2430.
Sidiq, R. K. (2015). Rancang Bangun Sistem Pengisi Baterai Mobil Listrik Berbasis Mikrokontroller Atmega16. (Bachelor thesis, Universitas Jember). Diakses dari https://repository.unej.ac.id/bitstream/handle/123456789/73490/
Wang, J., & Sun, X. (2012). Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries. Energy & Environmental Science, 5(1), 5163-5185.
Yadav, G. D., & Nair, J. J. (1999). Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous and mesoporous materials, 33(1-3), 1-48.