Pengaruh Variabel Solvent dan Waktu Leaching terhadap Konsentrasi Emas Terlarut pada PCB Handphone

Main Article Content

Raden Rara Dewi Artanti Putri
Dimas Pangestu
Diva Candra Khairunnisa

Abstract

ABSTRAK


 Perkembangan industri elektronik di Indonesia meningkat, maka begitu juga dengan limbah elektronik yang dihasilkannya. Salah satu bentuk limbah elektronik adalah lempengan PCB (Printed Circuit Board). Logam seperti Au, Ag, dan Cu dapat ditemukan pada PCB, dan logam-logam tersebut dapat dilakukan pemisahan dengan metode leaching. Penelitian ini bertujuan untuk mengetahui pengaruh volume larutan HNO3 sebagai tahapan pre-leaching, perbandingan HCl:HNO3 (aqua regia) dan waktu leaching terhadap konsentrasi emas terlarut. Variasi volume larutan HNO3 (20, 40, 45, 60) mL, variasi perbandingan HCl:HNO3 (3:1, 1:3, 10:1, 1:10) (v/v) dan variasi waktu leaching dengan aqua regia (30, 60, 90, 120) menit. Proses leaching dilakukan pada suhu 70℃. Filtrat hasil leaching dengan aqua regia kemudian dianalisis menggunakan AAS. Hasil penelitian ini memperoleh kondisi optimum leaching logam Au pada volume HNO3 60 mL dengan konsentrasi hasil pelarutan sebesar 26,11 mg/L, perbandingan HCl:HNO3 1:3 (v/v) dengan konsentrasi emas terlarut sebesar 23,77 mg/L dan waktu leaching dengan aqua regia 90 menit dengan konsentrasi logam Au sebesar 26,38 mg/L.


 


ABSTRACT


 The development of the electronics industry in Indonesia is increasing, and so is the electronic waste it produces. One form of electronic waste is PCB (Printed Circuit Board) slabs. Metals such as Au, Ag, and Cu can be found on PCBs, and these metals can be separated by the leaching method.. This study aims to determine the effect of the volume of HNO3 solution as a pre-leaching step, the ratio of HCl: HNO3 (aqua regia), and the leaching time to the dissolved gold concentration. Variations in the volume of HNO3 solution (20, 40, 45, 60) mL, variations in the ratio of HCl:HNO3 (3:1, 1:3, 10:1, 1:10) (v/v) and variations in leaching time with aqua regia ( 30, 60, 90, 120) minutes. The leaching process is carried out at a temperature of 70℃. The filtrate from leaching with aqua regia was then analyzed using AAS. The results of this study obtained the optimum conditions for leaching Au metal at a volume of 60 mL HNO3 with a concentration of 26.11 mg/L, a ratio of HCl: HNO3 1:3 (v/v) with a dissolved gold concentration of 23.77 mg/L and Leaching time with aqua regia was 90 minutes with a concentration of Au metal of 26.38 mg/L.

Downloads

Download data is not yet available.

Article Details

How to Cite
Putri, R. R. D. A., Pangestu, D., & Khairunnisa, D. C. (2022). Pengaruh Variabel Solvent dan Waktu Leaching terhadap Konsentrasi Emas Terlarut pada PCB Handphone. Fluida, 15(1), 30-37. https://doi.org/10.35313/fluida.v15i1.3458
Section
Articles

References

Alfian, Z. (2007). Pengaruh pH dan penambahan asam terhadap penentuan kadar unsur krom dengan menggunakan metode spekrofotometri serapan atom. Jurnal Sains Kimia, 11(1), 37–41.
Badan Pusat Statistik. (2020). Pertumbuhan Produksi Industri Manufaktur Triwulan IV 2019.
Cayumil, R., Khanna, R., Rajarao, R., Mukherjee, P. S., & Sahajwalla, V. (2015). Concentration of Precious Metals During Their Recovery From Electronic Waste. Waste Management. https://doi.org/10.1016/j.wasman.2015.12.004
Celep, O., Deveci, H., & Yazici, E. Y. (2017). A Preliminary Study on Nitric Acid Pre-treatment of Refractory Gold/Silver Ores. International Mining Congress of Turkey 2017, 463–468.
Cui, J., & Zhang, L. (2008). Metallurgical Recovery of Metals from Electronic Easte: A Review. Journal of Hazardous Materials, 158, 228–256. https://doi.org/10.1016/j.jhazmat.2008.02.001
Das, D., Mukherjee, S., & Chaudhuri, M. G. (2020). Studies on leaching characteristics of electronic waste for metal recovery using inorganic and organic acids and base. Waste Management and Research, 39(2), 1–8. https://doi.org/10.1177/0734242X20931929
de Souza, W. B., Abreu, C. S., Rodrigues, G. D., Mageste, A. B., & de Lemos, L. R. (2018). Selective Separation of Cu, Ni and Ag from Printed Circuit Board Waste Using an Environmentally Safe Technique. Journal of Environmental Management, 226, 76–82. https://doi.org/10.1016/j.jenvman.2018.08.049
Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020). The Global E-waste Monitor 2020: Quantities, Flows, and the Circular Economy Potential. In United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam.
Ji, A. M., Liu, H. Y., & Hu, Z. H. (2015). A Review on Copper Recovery from Waste P. International Conference on Industrial Technology and Management Science (ITMS 2015), 1546–1549. https://doi.org/10.2991/itms-15.2015.376
Long Le, H., Jeong, J., Lee, J. C., Pandey, B. D., Yoo, J. M., & Huyunh, T. H. (2011). Hydrometallurgical process for copper recovery from waste printed circuit boards (PCBs). Mineral Processing and Extractive Metallurgy Review: An International Journal, 32(2), 90–104. https://doi.org/10.1080/08827508.2010.530720
Mecucci, A., & Scott, K. (2002). Leaching and Electrochemical Recovery of Copper, Lead and Tin from Scrap Printed Circuit Boards. Journal of Chemical Technology and Biotechnology, 77(4), 449–457. https://doi.org/10.1002/jctb.575
Muhammad, I., Triantoro, A., & Novianti, Y. S. (2019). Optimasi Kondisi Pelarutan Logam Au dalam Endapan Placer dengan Proses. Junal Geomine, 7(November), 157–162.
Prayudo, A. N., Novian, O., Setyadi, & Antaresti. (2015). Koefisien Transfer Massa Kurkumin dari Temulawak. Jurnal Ilmiah Widya Teknik, 14(1), 26–31.
R., A. J., Santoso, P. D., Prasetyo, A. B., Maksum, A., Ulum, R. M., & Soedarsono, J. W. (2020). The effect of leaching time and concentration of sulfuric acid on increasing nickel and cobalt content from ferronickel slag waste after alkaline fusion using sodium carbonate. AIP Conference Proceedings, 2255. https://doi.org/10.1063/5.0014051
Rofika, F., & Rachmanto, T. A. (2018). Proses Hidrometalurgi Menggunakan Pelarut Aqua Regia pada Recovery Logam Emas (Au) Limbah Elektronik PCB HP. Jurnal Envirotek, 9(1), 63–68. https://doi.org/10.33005/envirotek.v9i1.1045
Setiawan, I. (2017). Pengolahan Nikel Laterit Secara Pirometalurgi Kini dan Penelitian Kedepan. Seminar Nasional Sains dan Teknologi 2016, (November), 1–7.
Sheng, P. P., & Etsell, T. H. (2007). Recovery of gold from computer circuit board scrap using aqua regia. Waste Management and Research, 25(4), 380–383. https://doi.org/10.1177/0734242X07076946
Tini, E. R., Yusnimar, & Drastinawati. (2016). Pemisahan Emas pada PC Maimboard Komputer: Pengaruh Rasio Sampel : HNO3 dan Jenis Presipitan. Jom FTEKNIK, 3(1), 1–7.
Wanta, K. C., Tanujaya, F. H., Susanti, R. F., Petrus, H. T. B. M., Perdana, I., & Astuti, W. (2018). Studi Kinetika Proses Atmospheric Pressure Acid Leaching Bijih Laterit Limonit Menggunakan Larutan Asam Nitrat Konsentrasi Rendah. Jurnal Rekayasa Proses, 12(2), 77–84. https://doi.org/10.22146/jrekpros.35644
Xu, Y., Li, J., & Liu, L. (2016). Current Status and Future Perspective of Recycling Copper by Hydrometallurgy from Waste Printed Circuit Boards. Procedia Environmental Sciences, 31, 162–170. https://doi.org/10.1016/j.proenv.2016.02.022