Potential of Reducing CO2 Emission Using Parabolic Trough Collector for 13.75MW Desalination Processes

Main Article Content

Arya Krisnatama I Putu
Sri Paryanto Mursid
Sri Widarti

Abstract

Desalination is an important process in fulfilling the freshwater demands of both the industrial sector and human needs. Typically, thermal desalination processes rely on fossil fuels to minimize production costs. However, using fossil fuel in desalination contributes to releasing CO2 emissions into the atmosphere. Therefore, it is essential to utilize renewable energy sources to mitigate the production of CO2 emissions. To reduce CO2 emissions research has been conducted to explore the potential use of parabolic trough solar collectors in harnessing available solar energy at the power plant site for thermal desalination processes which required 13.75 MW of thermal energy. The study utilized the system advisor model software to assess the collector’s system performance. The research findings indicate that 416 units of parabolic trough solar collectors are required to fulfill the thermal power needs. The presence of these solar collectors has the potential to generate 26.06 GWh of thermal power, thereby reducing coal consumption by 5,740.4 metric tons per year and directly lowering CO2 emissions by 13,892 metric tons per year.

Downloads

Download data is not yet available.

Article Details

How to Cite
I Putu, A. K., Mursid, S. P., & Widarti, S. (2023). Potential of Reducing CO2 Emission Using Parabolic Trough Collector for 13.75MW Desalination Processes. Fluida, 16(sp1), 8-14. https://doi.org/10.35313/fluida.v16isp1.5311
Section
Articles

References

J. Eke, A. Yusuf, A. Giwa and A. Sodiq, "The global status of desalination: An assessment of current desalination," Desalination, no. Elsevier, 2020.
C. Chen, Y. Jiang, Z. Ye, Y. Yang and L. Hou, "Sustainably integrating desalination with solar power to overcome future freshwater scarcity in China," Global Energy Interconnection, no. ScienceDirect, pp. 98-113, 2019.
S. A. Kalogirou, "Seawater desalination using renewable energy sources," Progress in Energy Combustion Science, no. Elsevier, pp. 243-275, 2005.
V. Belessiotis, S. Kalogirou and E. Delyannis, Thermal Solar Desalination: Methods and System, London: Elsevier, 2016.
B. Anand, R. Shankar, S. Murugavelh, W. Rivera, K. M. Prasad and R. Nagarajan, "A review on solar photovoltaic thermal integrated," Renewable and Sustainable Energy Reviews, no. Elsevier, 2021.
Y. Ghalavand, M. S. Hatamipour and A. Rahimi, "A review on energy consumption of desalination," Desalination and Water Treatment, no. Taylor & Francis, 2014.
A. Al-Othman, M. Tawalbeh, M. E. H. Assad, T. Alkayalli and A. Elsa, "Novel multi-stage flash (MSF) desalination plant driven by parabolic trough," Desalination, no. Elsevier, pp. 237-244, 2018.
T. Mezher, H. Fath, Z. Abbas and A. Khaled, "Techno-economic assessment and environmental impacts of," Desalination, no. Elsevier, pp. 263-273, 2011.
Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia, "Laporan Inventarisasi Gas Rumah Kaca (GRK) dan Monitoring, Pelaporan, Verifikasi (MPV)," KLHK RI, Jakarta, 2021.
Kementerian Energi dan Sumber Daya Mineral Republik Indonesia, "esdm.go.id," KESDM RI, 31 January 2023. [Online]. Available: https://www.esdm.go.id/id/berita-unit/direktorat-jenderal-ketenagalistrikan/capaian-kinerja-subsektor-ketenagalistrikan-infrastruktur-kendaraan-listrik-dan-penurunan-emisi-pembangkit-lampaui-target. [Accessed January 2023].
Kementerian Energi dan Sumber Daya Mineral Republik Indonesia, "esdm.go.id," KESDM RI, 24 February 2020. [Online]. Available: https://ebtke.esdm.go.id/post/2020/02/26/2486/keren.indonesia.power.kini.gunakan.panel.surya.di.wilayah.operasi. [Accessed January 2023].
Perusahaan Listrik Negara, PT PLN (Persero), "web.pln.co.id," PT PLN (Persero), 21 August 2022. [Online]. Available: https://web.pln.co.id/cms/media/2022/08/pln-gelar-pelatihan-cofiring-biomassa-olah-sampah-jadi-bahan-bakar-pltu-tarahan/. [Accessed January 2023].
Kementerian Energi dan Sumber Daya Mineral Republik Indonesia, "esdm.go.id," KESDM RI, 19 June 2012. [Online]. Available: https://www.esdm.go.id/id/media-center/arsip-berita/matahari-untuk-plts-di-indonesia. [Accessed January 2023].
N. A. Moharram, S. Bayoumi, A. A. Hanafy and W. M. El-Maghlany, "Hybrid desalination and power generation plant utilizing," Case Studies in Thermal Engineering, no. Elsevier, 2021.
M. Mehos, H. Price, R. Cable, D. Kearney, B. Kelly, G. Kolb and F. Morse, "Concentrating Solar Power Best Practice Study," National Renewable Energy Laboratory, Colorado, 2020.
S. A. Kalogirou, "A Detailed Thermal Model of a Parabolic Trough Collector Receiver," Energy, pp. 298-306, 2012.
M. Alguacil, C. Prieto, A. Rodiguez and J. Lohrl, "Direct steam generation in parabolic trough collectors," Energy Procedia, no. ScienceDirect, pp. 21-29, 2014.
T. Stoffel, D. Renne, D. Myers, S. Wilcox, M. Sengupta, R. George and C. Turchi, Concentrating Solar Power : Best Practice Handbook for the Collection and Use of Solar Resource Data, Colorado: National Renewable Energy Laboratory, 2010.
A. Boretti, J. Nayfeh and W. Al-Kouz, "Validation of SAM Modelling of Concentrated Solar Power Plant," Energies, p. 1949, 2020.
M. J. Wagner and P. Gilman, "Technical Manual for the SAM Physical Trough Model," National Renewable Energy Laboratory, Colorado, 2011.
I. H. Yilmaz and A. Mwesigye, "Modeling, simulation and performance analysis of parabolic trough collectors: A comprehensive review," Applied Energy 225 (2018), no. Elsevier, pp. 135-174, 2018.
J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, New Jersey: John Wiley & Sons, 2013.