The Effect of Papaya Leaf Concentration and Fermentation Time on The Decafeination Process of Robusta Coffee

Main Article Content

Tri Hariyadi
Keryanti Keryanti
Nurisa Salsabila
Sarah Sarah

Abstract

High level of caffeine in Robusta coffee requires the reduction of level to accommodate person with low caffeine tolerance. The wet fermentation process with papaya leaf extract containing the papain enzyme was used to decaffeinate the coffee. This study aimed to investigate the effects of papaya leaf extract concentration and sampling time on the decaffeination of Robusta coffee green beans. The papaya leaf extract concentration ranged from 10% to 80% (w/v), with fermentation lasting 6 to 72 hours. The caffeine content was measured using a UV-Vis spectrophotometer, and organoleptic tests were performed on 40 untrained panelists. The results showed that both the concentration of papaya leaf extract and the fermentation time influenced the decaffeination. The optimum result was obtained after 48 hours of fermentation with 80% (w/v) papaya leaf extract resulting in a caffeine content of 0.268% (w/w) from an initial content of 1.20% (w/w), representing a 77.82% decrease in caffeine level efficiency. Fermented coffee was preferred by 58% of panellists over unfermented coffee. These findings imply that papain found in papaya leaves can reduce caffeine levels while also improving flavor and aroma.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hariyadi, T., Keryanti, K., Salsabila, N., & Sarah, S. (2023). The Effect of Papaya Leaf Concentration and Fermentation Time on The Decafeination Process of Robusta Coffee . Fluida, 16(2), 105-113. https://doi.org/10.35313/fluida.v16i2.5441
Section
Articles

References

[1] Y. Wang, S. Kalytchuk, Y. Zhang, H. Shi, S. v. Kershaw, and A. L. Rogach, “Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel,” Journal of Physical Chemistry Letters, vol. 5, no. 8, pp. 1412–1420, Apr. 2014, doi: 10.1021/jz5005335.
[2] Y. Lu, S. Wang, K. Yu, J. Yu, D. Zhao, and C. Li, “Encapsulating carbon quantum dot and organic dye in multi-shell nanostructured MOFs for use in white light-emitting diode,” Microporous and Mesoporous Materials, vol. 319, May 2021, doi: 10.1016/j.micromeso.2021.111062.

[1] K. Ramalakshmi, I. R. Kubra, and L. J. M. Rao, “Antioxidant potential of low-grade coffee beans,” Food Research International, vol. 41, no. 1, pp. 96–103, 2008, doi: 10.1016/j.foodres.2007. 10.003.
[2] H. L. R. Sinaga, F. Bastian, and A. Syarifuddin, “Effect of decaffeination and re-fermentation on level of caffeine, chlorogenic acid and total acid in green bean robusta coffee,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, 2021. doi: 10.1088/1755-1315/ 807/2/022069.
[3] T. K. Manios, D. Mattia, and M. R. Bird, “Fouling of polyethersulphone ultrafiltration membranes during the decaffeination of ground coffee brews,” Food and Bioproducts Processing, vol. 136, pp. 14–23, 2022, doi: 10.1016/j.fbp.2022.09.005.
[4] S. Sakiroh and M. S. D. Ibrahim, “Karakterisasi Morfologi, Anatomi, dan Fisiologi Tujuh Klon Unggul Kopi Robusta,” Jurnal Tanaman Industri dan Penyegar, vol. 7, no. 2, p. 73, Jul. 2020, doi: 10.21082/jtidp.v7n2.2020. p73-82.
[5] N. Kuswardhani, N. P. Mukti, and P. Sari, “Antioxidant and sensory properties of ready to drink coffee-ginger made from decaffeinated and non-decaffeinated robusta coffee beans,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, 2021. doi: 10.1088/1755-1315/653/1/012050.
[6] S. R. Sabbila and R. T. D. W. Broto, “Utilization of Papain Enzymes on the Production of Virgin Coconut Oil,” Journal of Vocational Studies on Applied Research, vol. 4, no. 2, pp. 47–52, 2022, doi: 10.14710/jvsar.v4i2. 16036.
[7] B. R. de Castro Leite Júnior, F. de Oliveira Martins, L.M. Trevizano, A. P. da Capela, T. de Melo Carlos Dias, A.F. C. Pacheco, E. M. F. Martins, “Chapter 7 - Applications of enzymes in food pocessing”, Research and Technological Advances in Food Science, pp. 175–194, 2022, doi: 10.1016/B978-0-12-824369-5.00003-8.
[8] Zusfahair, D. Riana Ningsih and F. Nur Habibah, “Characterization of Papain from Carica Papaya L. Leaves,” Molekul, vol. 9, no. 1, pp. 44-55, 2014. DOI: 10.20884/1.jm.2014.9.1.149
[9] A. Sukoco, I. Novenda, Maryanto, N. Kuswardhani, and P. Sari, “Chemical compounds and antioxidant activity in caffeinated and decaffeinated green robusta coffee beans enriched with ginger extract,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, 2021. doi: 10.1088/1755-1315/709/1/012035.
[10] K. A. Wamuyu, K. Richard, M. Beatrice, and K. Cecilia, “Effect of Different Fermentation Methods on Physiochemical Composition and Sensory Quality of Coffee (Coffea arabica),” IOSR J Environ Sci Toxicol Food Technol, vol. 11, no. 06, pp. 31–36, 2017, doi: 10.9790/2402-1106023136.
[11] S. Rosalinda, T. Febriananda, and S. Nurjanah, “Penggunaan Berbagai Konsentrasi Kulit Buah Pepaya dalam Penurunan Kadar Kafein pada Kopi,” Jurnal Teknotan, vol. 15, no. 1, p. 27, 2021, doi: 10.24198/jt.vol15n1.5.
[12] M. C. B. da Mota, N. N. Batista, M. H. S. Rabelo, D. E. Ribeiro, F. M. Borém, and R. F. Schwan, “Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast,” Food Research International, vol. 136, 2020, doi: 10.1016/j.foodres.2020.109482.
[13] H. Poerwanty, “The Fermentation Of Parchment Ohmic Technology Used To ProcessCoffee Beans (A Wet Black Coffee) Aroma,” Thesis, Sekolah Pascasarjana Universitas Hasanuddin Makassar, 2018.
[14] A. Musilová and A. Kubíčková, “Effect of brewing conditions on caffeine content in tea infusions simulating home-made cup of tea,” Monatsh Chem, vol. 149, pp. 1561–1566, 2018, https://doi.org/10.1007/s00706-018-2204-0.
[15] M. Misto, N. P. Lestari, and E. Purwandari,” Chlorogenic Acid Content of Local Robusta Coffee at Variations of Roasting Temperature,” Jurnal Pendidikan Fisika Indonesia, vol. 18, no. 1, pp. 25–32, 2022, doi: 10.15294/ jpfi.v18i1.27889.
[16] Misto, K. Alawiyah, L. Rohman, Supriyadi, Mutmainnah, and E. Purwandari, “Spectrophotometric analysis of caffeine in local product of Arabica: observed at different roasted temperatures,” IOP Conf Ser Mater Sci Eng, vol. 1173, no. 1, p. 012012, 2021, doi:10.1088/1757-899x/1173/1/ 012012.
[17] S. Suharman and P. A. Gafar, “The Technology of Robusta Coffee Decaffeination for Small and Medium Scale of Industries,” Jurnal Dinamika Penelitian Industri, vol. 28, no. 2, pp. 87, 2017. doi: 10.28959/jdpi.v28i2. 2953
[18] F. N. Minah, Muyassaroh, W. Azizah, and M. Sabrina, “The Effect of Variations of Drying Temperature and Time on The Synthesis of Papain Enzyme from Papaya Leaf Extract,” 2021.
[19] M. Haile and W. H. Kang, “The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality,” Journal of Food Quality, 2019, 2019. Hindawi Limited, doi: 10.1155/2019/ 4836709.
[20] A. L. Sales, J. de Paula, C. M. Silva, A. Cruz, M. A. L. Miguel, and A. Farah “Effects of regular and decaffeinated roasted coffee (Coffea arabica and Coffea canephora) extracts and bioactive compounds on in vitro probiotic bacterial growth,” Food Funct, vol. 11, no. 2, pp. 1410-1424, 2020. doi: 10.1039/c9fo02589h.
[21] S. Wulandari, M. Ainuri, and A. C. Sukartiko, “Biochemical content of Robusta coffees under fully-wash, honey, and natural processing methods,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, 2021. doi: 10.1088/1755-1315/819/1/012067.
[22] Q. D. Utama, D. N. A. Paramartha, R. Widyasari, and N. Aini, “Dekafeinasi Kopi Robusta (Coffea canephora) Lombok Menggunakan Sari Labu Siam (Sechium edule)” [Decaffeination of Lombok Robusta Coffee (Coffea canephora) using Chayote (Sechium edule) Juice], vol. 8, no. 1, 2022. http://www.profood.unram.ac.id/index.php/profood
[23] S. I. Mussatto, E. M. S. Machado, S. Martins, and J. A. Teixeira, “Production, Composition, and Application of Coffee and Its Industrial Residues,” Food and Bioprocess Technology, vol. 4, no. 5, pp. 661–672, 2011, doi: 10.1007/s11947-011-0565-z.
[24] W. B. Sunarharum, D. J. Williams, and H. E. Smyth, “Complexity of coffee flavor: A compositional and sensory perspective,” Food Research International, Elsevier Ltd, vol. 62, pp. 315–325, 2014, doi: 10.1016/j.foodres. 2014.02.030.
[25] H. Elhalis, J. Cox, and J. Zhao, “Coffee fermentation: Expedition from traditional to controlled processand perspectives for industrialization,” Applied Food Research, Elsevier B.V., vol. 3, no. 1, 2023, doi: 10.1016/j.afres. 2022.100253.
[26] S.J. Zhang, F. deBruyn, V. Pothakos, J. Torres, C. Falconi, C. Moccand, S. Weckx and L. de Vuyst, “Following Coffee Production from Cherries to Cup: Microbiological and Metabolomic Analysis of Wet Pocessing of Coffea arabica,” vol. 85, no. 6, pp. e02635-18. doi: 10.1128/ AEM.02635-18.
[27] L. C. Trugo, C. A. B. De Maria, and C. C. Werneck, “Simultaneous determination of total chlorogenic acid and caffeine in coffee by high performance gel filtration chromatography,” Food Chem, vol. 42, no. 1, pp. 81–87, 1991, doi: 10.1016/0308-8146(91)90008-C.
[28] M. F. Marcone, “Composition and properties of Indonesian palm civet coffee (Kopi Luwak) and Ethiopian civet coffee,” Food Research International, vol. 37, no. 9, pp. 901–912, 2004,doi: 10.1016/j.foodres.2004. 05.008.
[29] J. Daisa, E. Rossi, dan Isna Rahma Dini, “Pemanfaatan Ekstrak Kasar Enzim Papain pada Proses Dekafeinasi Kopi Robusta (Utilization of Crude Enzyme Extract Papain in Processing of Decaffeinatiobn Robusta Coffea),” Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau, vol. 4, no. 1, 2017.
[30] K. Fibrianto, Y. R. Febryana, and E. S. Wulandari, “Effect of brewing technique and particle size of the ground coffee on sensory profiling of brewed Dampit robusta coffee,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, 2018. doi: 10.1088/1755-1315/131/1/012009.